Stochastic response analysis of multi-degree-of-freedom vibro-impact system undergoing Markovian jump

2020 ◽  
Vol 101 (2) ◽  
pp. 823-834
Author(s):  
Rongchun Hu ◽  
Xudong Gu ◽  
Zicheng Deng
2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


2018 ◽  
Vol 28 (13) ◽  
pp. 1830043 ◽  
Author(s):  
Meng Su ◽  
Wei Xu ◽  
Guidong Yang

In this paper, the stationary response of a van der Pol vibro-impact system with Coulomb friction excited by Gaussian white noise is studied. The Zhuravlev nonsmooth transformation of the state variables is utilized to transform the original system to a new system without the impact term. Then, the stochastic averaging method is applied to the equivalent system to obtain the stationary probability density functions (pdfs). The accuracy of the analytical results obtained from the proposed procedure is verified by those from the Monte Carlo simulation based on the original system. Effects of different damping coefficients, restitution coefficients, amplitudes of friction and noise intensities on the response are discussed. Additionally, stochastic P-bifurcations are explored.


2012 ◽  
Vol 22 (05) ◽  
pp. 1250110 ◽  
Author(s):  
GUILIN WEN ◽  
HUIDONG XU ◽  
LU XIAO ◽  
XIAOPING XIE ◽  
ZHONG CHEN ◽  
...  

Vibro-impact systems with intermittent contacts are strongly nonlinear. The discontinuity of impact can give rise to rich nonlinear dynamic behaviors and bring forth challenges in the modeling and analysis of this type of nonsmooth systems. The dynamical behavior of a two-degree-of-freedom vibro-impact system is investigated experimentally in this paper. The experimental apparatus is composed of two spring-linked oscillators moving on a lead rail. One of the two oscillators connected to an excitation system intermittently impacts with a spherical obstacle fixed on the thick steel wall. With different gap sizes between the impacting oscillator and the obstacle, the dynamical behaviors are investigated by changing the excitation frequencies. The experimental results show periodic, grazing and chaotic dynamical behaviors of the vibro-impact system.


2000 ◽  
Vol 68 (4) ◽  
pp. 670-674 ◽  
Author(s):  
G. L. Wen and ◽  
J. H. Xie

A nontypical route to chaos of a two-degree-of-freedom vibro-impact system is investigated. That is, the period-doubling bifurcations, and then the system turns out to the stable quasi-periodic response while the period 4-4 impact motion fails to be stable. Finally, the system converts into chaos through phrase locking of the corresponding four Hopf circles or through a finite number of times of torus-doubling.


Author(s):  
Ioannis Petromichelakis ◽  
Apostolos F. Psaros ◽  
Ioannis A. Kougioumtzoglou

Abstract A methodology based on the Wiener path integral technique (WPI) is developed for stochastic response determination and reliability-based design optimization of a class of nonlinear electromechanical energy harvesters endowed with fractional derivative elements. In this regard, first, the WPI technique is appropriately adapted and enhanced to account both for the singular diffusion matrix and for the fractional derivative modeling of the capacitance in the coupled electromechanical governing equations. Next, a reliability-based design optimization problem is formulated and solved, in conjunction with the WPI technique, for determining the optimal parameters of the harvester. It is noted that the herein proposed definition of the failure probability constraint is particularly suitable for harvester configurations subject to space limitations. Several numerical examples are included, while comparisons with pertinent Monte Carlo simulation data demonstrate the satisfactory performance of the methodology.


Author(s):  
Akira Saito ◽  
Junta Umemoto ◽  
Kohei Noguchi ◽  
Meng-Hsuan Tien ◽  
Kiran D’Souza

Abstract In this paper, an experimental forced response analysis for a two degree of freedom piecewise-linear oscillator is discussed. First, a mathematical model of the piecewise linear oscillator is presented. Second, the experimental setup developed for the forced response study is presented. The experimental setup is capable of investigating a two degree of freedom piecewise linear oscillator model. The piecewise linearity is achieved by attaching mechanical stops between two masses that move along common shafts. Forced response tests have been conducted, and the results are presented. Discussion of characteristics of the oscillators are provided based on frequency response, spectrogram, time histories, phase portraits, and Poincaré sections. Period doubling bifurcation has been observed when the excitation frequency changes from a frequency with multiple contacts between the masses to a frequency with single contact between the masses occurs.


1989 ◽  
Vol 111 (4) ◽  
pp. 221-230 ◽  
Author(s):  
A. Ertas ◽  
J.-H. Lee

The linear analysis in the frequency domain is presented for the surge motion of a tension leg platform (TLP) in the case of random waves only and random waves with constant current. A single-degree-of-freedom model of a TLP is employed for response. The superposition method, one of the simulation techniques, is applied to random sea wave, and the response analysis of TLP in time is developed with wave velocity and wave acceleration simulations. Wave-induced forces are calculated using the modified Morison equation, which takes into account relative motion. Computational methods for both analyses are developed, and the results of stochastic, dynamic response of the TLP, with and without the presence of current, are presented and compared.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaodong Yang ◽  
Jida Wu ◽  
Haishen Jiang ◽  
Wenqiang Qiu ◽  
Chusheng Liu

Dynamic characteristic and reliability of the vibrating screen are important indicators of large vibrating screen. Considering the influence of coupling motion of each degree of freedom, the dynamic model with six degrees of freedom (6 DOFs) of the vibrating screen is established based on the Lagrange method, and modal parameters (natural frequencies and modes of vibration) of the rigid body are obtained. The finite element modal analysis and harmonic response analysis are carried out to analyze the elastic deformation of the structure. By using the parametric modeling method, beam position is defined as a variable, and an orthogonal experiment on design is performed. The BP neural network is used to model the relationship between beam position and maximal elastic deformation of the lateral plate. Further, the genetic algorithm is used to optimize the established neural network model, and the optimal design parameters are obtained.


Sign in / Sign up

Export Citation Format

Share Document