Characterization of efflux transport proteins of the human choroid plexus papilloma cell line HIBCPP, a functional in vitro model of the blood-cerebrospinal fluid barrier

2015 ◽  
Vol 32 (9) ◽  
pp. 2973-2982 ◽  
Author(s):  
Alexandra Bernd ◽  
Melanie Ott ◽  
Hiroshi Ishikawa ◽  
Horst Schroten ◽  
Christian Schwerk ◽  
...  
2012 ◽  
Vol 170 (1-2) ◽  
pp. 66-74 ◽  
Author(s):  
Henriette Schneider ◽  
Claudia Ellen Weber ◽  
Julia Schoeller ◽  
Ulrike Steinmann ◽  
Julia Borkowski ◽  
...  

Author(s):  
Mathieu Vinken ◽  
Michaël Maes ◽  
Sara Crespo Yanguas ◽  
Joost Willebrords ◽  
Tamara Vanhaecke ◽  
...  

2021 ◽  
Vol 350 ◽  
pp. S129-S130
Author(s):  
R Magny ◽  
K. Kessal ◽  
A. Regazzetti ◽  
O. Laprévote ◽  
C. Baudouin ◽  
...  

2016 ◽  
Vol 133 ◽  
pp. 100-112 ◽  
Author(s):  
Victor Llombart ◽  
Teresa García-Berrocoso ◽  
Joan Josep Bech-Serra ◽  
Alba Simats ◽  
Alejandro Bustamante ◽  
...  

2020 ◽  
Vol 12 (10) ◽  
pp. 1002-1007
Author(s):  
Sarah Johnson ◽  
Ray McCarthy ◽  
Brian Fahy ◽  
Oana Madalina Mereuta ◽  
Seán Fitzgerald ◽  
...  

​BackgroundCalcified cerebral emboli (CCEs) are a rare cause of acute ischemic stroke (AIS) and are frequently associated with poor outcomes. The presence of dense calcified material enables reliable identification of CCEs using non-contrast CT. However, recanalization rates with the available mechanical thrombectomy (MT) devices remain low.ObjectiveTo recreate a large vessel occlusion involving a CCE using an in vitro silicone model of the intracranial vessels and to demonstrate the feasability of this model to test different endovascular strategies to recanalize an occlusion of the M1 segment of the middle cerebral artery (MCA).​MethodsAn in vitro model was developed to evaluate different endovascular treatment approaches using contemporary devices in the M1 segment of the MCA. The in vitro model consisted of a CCE analog placed in a silicone neurovascular model. Development of an appropriate CCE analog was based on characterization of human calcified tissues that represent likely sources of CCEs. Feasibility of the model was demonstrated in a small number of MT devices using four common procedural techniques.​ResultsCCE analogs were developed with similar mechanical behavior to that of ex vivo calcified material. The in vitro model was evaluated with various MT techniques and devices to show feasibility of the model. In this limited evaluation, the most successful retrieval approach was performed with a stent retriever combined with local aspiration through a distal access catheter, and importantly, with flow arrest and dual aspiration using a balloon guide catheter.​ConclusionCharacterization of calcified tissues, which are likely sources of CCEs, has shown that CCEs are considerably stiffer than thrombus. This highlights the need for a different in vitro AIS model for CCEs than those used for thromboemboli. Consequentially, an in vitro AIS model representative of a CCE occlusion in the M1 segment of the MCA has been developed.


2019 ◽  
Vol 30 (3) ◽  
pp. 229-241 ◽  
Author(s):  
Patricia Bermejo ◽  
María Carmen Sánchez ◽  
Arancha Llama‐Palacios ◽  
Elena Figuero ◽  
David Herrera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document