scholarly journals Retraction Note: Engineered Polyallylamine Nanoparticles for Efficient In Vitro Transfection

2020 ◽  
Vol 37 (12) ◽  
Author(s):  
Atul Pathak ◽  
Anita Aggarwal ◽  
Raj K. Kurupati ◽  
Soma Patnaik ◽  
Archana Swami ◽  
...  
2020 ◽  
Vol 229 ◽  
pp. 115451 ◽  
Author(s):  
S. Leitner ◽  
S. Grijalvo ◽  
C. Solans ◽  
R. Eritja ◽  
M.J. García-Celma ◽  
...  

2006 ◽  
Vol 174 (5) ◽  
pp. 677-687 ◽  
Author(s):  
Hak Kyun Kim ◽  
Yong Sun Lee ◽  
Umasundari Sivaprasad ◽  
Ankit Malhotra ◽  
Anindya Dutta

Three muscle-specific microRNAs, miR-206, -1, and -133, are induced during differentiation of C2C12 myoblasts in vitro. Transfection of miR-206 promotes differentiation despite the presence of serum, whereas inhibition of the microRNA by antisense oligonucleotide inhibits cell cycle withdrawal and differentiation, which are normally induced by serum deprivation. Among the many mRNAs that are down-regulated by miR-206, the p180 subunit of DNA polymerase α and three other genes are shown to be direct targets. Down-regulation of the polymerase inhibits DNA synthesis, an important component of the differentiation program. The direct targets are decreased by mRNA cleavage that is dependent on predicted microRNA target sites. Unlike small interfering RNA–directed cleavage, however, the 5′ ends of the cleavage fragments are distributed and not confined to the target sites, suggesting involvement of exonucleases in the degradation process. In addition, inhibitors of myogenic transcription factors, Id1-3 and MyoR, are decreased upon miR-206 introduction, suggesting the presence of additional mechanisms by which microRNAs enforce the differentiation program.


Blood ◽  
2009 ◽  
Vol 113 (2) ◽  
pp. 458-461 ◽  
Author(s):  
Shinji Kunishima ◽  
Ryoji Kobayashi ◽  
Tomohiko J. Itoh ◽  
Motohiro Hamaguchi ◽  
Hidehiko Saito

Abstract Congenital macrothrombocytopenia is a genetically heterogeneous group of rare disorders. We identified the first TUBB1 mutation, R318W, in a patient with congenital macrothrombocytopenia. The patient was heterozygous for Q43P, but this single-nucleotide polymorphism (SNP) did not relate to macrothrombocytopenia. Although no abnormal platelet β1-tubulin localization/marginal band organization was observed, the level of β1-tubulin was decreased by approximately 50% compared with healthy controls. Large and irregular bleb protrusions observed in megakaryocytes derived from the patient's peripheral blood CD34+ cells suggested impaired megakaryocyte fragmentation and release of large platelets. In vitro transfection experiments in Chinese hamster ovary (CHO) cells demonstrated no incorporation of mutant β1-tubulin into microtubules, but the formation of punctuated insoluble aggregates. These results suggested that mutant protein is prone to aggregation but is unstable within megakaryocytes/platelets. Alternatively, mutant β1-tubulin may not be transported from the megakaryocytes into platelets. W318 β1-tubulin may interfere with normal platelet production, resulting in macrothrombocytopenia.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kaimin Wu ◽  
Mengyuan Liu ◽  
Nan Li ◽  
Li Zhang ◽  
Fanhui Meng ◽  
...  

Abstract Background The biofunctionalization of titanium implants for high osteogenic ability is a promising approach for the development of advanced implants to promote osseointegration, especially in compromised bone conditions. In this study, polyelectrolyte multilayers (PEMs) were fabricated using the layer-by-layer approach with a chitosan-miRNA (CS-miRNA) complex and sodium hyaluronate (HA) as the positively and negatively charged polyelectrolytes on microarc-oxidized (MAO) Ti surfaces via silane-glutaraldehyde coupling. Methods Dynamic contact angle and scanning electron microscopy measurements were conducted to monitor the layer accumulation. RiboGreen was used to quantify the miRNA loading and release profile in phosphate-buffered saline. The in vitro transfection efficiency and the cytotoxicity were investigated after seeding mesenchymal stem cells (MSCs) on the CS-antimiR-138/HA PEM-functionalized microporous Ti surface. The in vitro osteogenic differentiation of the MSCs and the in vivo osseointegration were also evaluated. Results The surface wettability alternately changed during the formation of PEMs. The CS-miRNA nanoparticles were distributed evenly across the MAO surface. The miRNA loading increased with increasing bilayer number. More importantly, a sustained miRNA release was obtained over a timeframe of approximately 2 weeks. In vitro transfection revealed that the CS-antimiR-138 nanoparticles were taken up efficiently by the cells and caused significant knockdown of miR-138 without showing significant cytotoxicity. The CS-antimiR-138/HA PEM surface enhanced the osteogenic differentiation of MSCs in terms of enhanced alkaline phosphatase, collagen production and extracellular matrix mineralization. Substantially enhanced in vivo osseointegration was observed in the rat model. Conclusions The findings demonstrated that the novel CS-antimiR-138/HA PEM-functionalized microporous Ti implant exhibited sustained release of CS-antimiR-138, and notably enhanced the in vitro osteogenic differentiation of MSCs and in vivo osseointegration. This novel miRNA-functionalized Ti implant may be used in the clinical setting to allow for more effective and robust osseointegration.


2009 ◽  
Vol 11 (4) ◽  
pp. 56 ◽  
Author(s):  
Tomoaki Kurosaki ◽  
Takashi Kitahara ◽  
Mugen Teshima ◽  
Koyo Nishida ◽  
Junzo Nakamura ◽  
...  

Purpose: In gene delivery, a fusogenic lipid such as dioleyl phosphatidylethanolamine (DOPE) which is a component of cationic liposomal vector is important factor for effective transfection efficiency. We investigated the effect of penetration enhancers as alternative helper-lipids to DOPE. Methods: Transdermal penetraion enhancers such as N-lauroylsarcosine (LS), (R)-(+)-limonene (LM), vitamin E (VE), and phosphatidyl choline from eggs (EggPC) were used in this experiments as helper-lipids with N-[1-(2, 3-dioleyloxy) propyl]-N, N, N-trimethlylammonium chloride (DOTMA) and cholesterol (CHOL). We examined in vitro transfection efficiency, cytotoxicity, hematotoxicity, and in vivo transfection efficiency of plasmid DNA/cationic liposomes complexes. Results: In transfection experiments in vitro, the cationic lipoplexes containing LS had highest transfection efficiency among the other lipoplexes independently of FBS. Furthermore, the lipoplexes containing LS had lowest cell toxicity among the other lipoplexes in the presence of FBS. As the results of erythrocytes interaction experiment, DOTMA/LS/CHOL, DOTMA/VE/CHOL, and DOTMA/EggPC/CHOL lipoplexes showed extremely lower hematotoxicity. On the basis of these results, the in vivo transfection efficiencies of the lipoplexes were examined. The lipoplexes containing LS had the highest transfection activity among the other lipoplexes. Conclusion: In conclusion, several transdermal penetration enhancers are available for alternative helper-lipids to DOPE in cationic liposomal vectors. Among them, DOTMA/LS/CHOL lipoplexes showed superior characteristics in in vitro transfection efficiency, cell toxicity, hematotoxicity, and in vivo transfection efficiency.


Sign in / Sign up

Export Citation Format

Share Document