ultrasound enhancement
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 13)

H-INDEX

18
(FIVE YEARS 2)

Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1079
Author(s):  
Marco Thomä ◽  
Andreas Gester ◽  
Guntram Wagner ◽  
Marco Fritzsche

Friction stir welding (FSW) is an innovative solid-state joining process, which is suitable for joining dissimilar materials with strongly differing physical and chemical properties such as aluminum and steel. Where other joining methods such as fusion welding struggle to achieve appropriate joint strengths due to the excessive formation of brittle aluminum-rich intermetallic phases (IMP), FSW joints of aluminum and steel only show small layers of IMP, thus, sufficient tensile strengths in proximity to the maximum tensile strength of the weaker aluminum base material can be reached. With the aim to optimize the mechanical and microstructural properties of such dissimilar joints for widening the field for possible industrial applications, several hybrid friction stir welding methods have been developed which include an additional energy input, whereas the ultrasound enhancement (USE-FSW) is one of the most promising. The current work was carried out on AA6061/DC04 joints which were successfully friction stir welded with and without ultrasound support, in respect to the influence of varying the ultrasound transmission side. The functionality of the USE-FSW setup could be verified by multi point laser vibrometer measurements. Additionally, a higher proportion of transversal oscillation for the transmission of power ultrasound into aluminum could be detected using a scanning vibrometer. In comparison to the conventionally friction stir welded joints the ultrasound enhancement led to an avoidance of weld defects and an increase of the steel particle volume in the stir zone. The joint produced with power ultrasound transmission via aluminum resulted in a more uniform interface.


LWT ◽  
2020 ◽  
Vol 126 ◽  
pp. 109312 ◽  
Author(s):  
Yiting Guo ◽  
Bengang Wu ◽  
Xiuyu Guo ◽  
Fangfang Ding ◽  
Zhongli Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document