Correlation between leaf litter and fine root decomposition among subtropical tree species

2010 ◽  
Vol 335 (1-2) ◽  
pp. 289-298 ◽  
Author(s):  
Hui Wang ◽  
Shirong Liu ◽  
Jiangming Mo
Oecologia ◽  
2009 ◽  
Vol 162 (2) ◽  
pp. 505-513 ◽  
Author(s):  
Sarah E. Hobbie ◽  
Jacek Oleksyn ◽  
David M. Eissenstat ◽  
Peter B. Reich

Ecosystems ◽  
2021 ◽  
Author(s):  
Janna Wambsganss ◽  
Grégoire T. Freschet ◽  
Friderike Beyer ◽  
Jürgen Bauhus ◽  
Michael Scherer-Lorenzen

AbstractDecomposition of dead fine roots contributes significantly to nutrient cycling and soil organic matter stabilization. Most knowledge of tree fine-root decomposition stems from studies in monospecific stands or single-species litter, although most forests are mixed. Therefore, we assessed how tree species mixing affects fine-root litter mass loss and which role initial litter quality and environmental factors play. For this purpose, we determined fine-root decomposition of 13 common tree species in four European forest types ranging from boreal to Mediterranean climates. Litter incubations in 315 tree neighborhoods allowed for separating the effects of litter species from environmental influences and litter mixing (direct) from tree diversity (indirect). On average, mass loss of mixed-species litter was higher than those of single-species litter in monospecific neighborhoods. This was mainly attributable to indirect diversity effects, that is, alterations in microenvironmental conditions as a result of tree species mixing, rather than direct diversity effects, that is, litter mixing itself. Tree species mixing effects were relatively weak, and initial litter quality and environmental conditions were more important predictors of fine-root litter mass loss than tree diversity. We showed that tree species mixing can alter fine-root litter mass loss across large environmental gradients, but these effects are context-dependent and of moderate importance compared to environmental influences. Interactions between species identity and site conditions need to be considered to explain diversity effects on fine-root decomposition.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Shao Yang ◽  
Ruimei Cheng ◽  
Wenfa Xiao ◽  
Yafei Shen ◽  
Lijun Wang ◽  
...  

Fine-root decomposition contributes a substantial amount of nitrogen that sustains both plant productivity and soil metabolism, given the high turnover rates and short root life spans of fine roots. Fine-root decomposition and soil carbon and nitrogen cycling were investigated in a 1-year field litterbag study on lower-order roots (1–2 and 3–4) of Pinus massoniana to understand the mechanisms of heterogeneity in decomposition rates and further provide a scientific basis for short-time research on fine-root decomposition and nutrient cycling. Lower-order roots had slower decay rates compared with higher-order roots (5–6). A significantly negative correlation was observed between the decay constant mass remaining and initial N concentrations as well as acid unhydrolyzable residues. Results also showed that in lower-order roots (orders 1–2 and 3–4) with a lower C:N ratio, root residual N was released and then immobilized, whereas in higher-order roots (order 5–6) with a higher C:N ratio, root residual N was immobilized and then released in the initial stage. In the later stage, N immobilization occurred in lower-order roots and N release in higher-order roots, with the C:N ratio gradually decreasing to about 40 in three branching-order classes and then increasing. Our results suggest that lower-order roots decompose more slowly than higher-order roots, which may result from the combined effects of high initial N concentration and poor C quality in lower-order roots. During the decomposition of P. massoniana, N release or N immobilization occurred at the critical C:N ratio.


2019 ◽  
Vol 22 (6) ◽  
pp. 946-953 ◽  
Author(s):  
Craig R. See ◽  
Michael Luke McCormack ◽  
Sarah E. Hobbie ◽  
Habacuc Flores‐Moreno ◽  
Whendee L. Silver ◽  
...  

2015 ◽  
Vol 83 ◽  
pp. 76-83 ◽  
Author(s):  
Ang Li ◽  
Timothy J. Fahey ◽  
Teresa E. Pawlowska ◽  
Melany C. Fisk ◽  
James Burtis

Sign in / Sign up

Export Citation Format

Share Document