Effects of elevated ozone on the contribution of nitrogen rhizodeposition by spring wheat to different soil N pools

2018 ◽  
Vol 425 (1-2) ◽  
pp. 321-333
Author(s):  
Yanhong Cao ◽  
Yi Shi ◽  
Xinchao Sun ◽  
Caiyan Lu ◽  
Xueyan Liu
2013 ◽  
Vol 72 ◽  
pp. 161-170 ◽  
Author(s):  
L. Morillas ◽  
M. Portillo-Estrada ◽  
A. Gallardo

2007 ◽  
Vol 87 (4) ◽  
pp. 709-718 ◽  
Author(s):  
B. J. Zebarth ◽  
E. J. Botha ◽  
H. Rees

Use of an in-season measurement of crop nitrogen (N) status to optimize fertilizer N management has been proposed as a means of optimizing yield of spring wheat while minimizing environmental N losses. This study determined the effect of the rate and time of fertilizer N application on the grain yield, grain protein, and apparent recovery of fertilizer N in grain and in the above-ground plant for spring wheat (Triticum aestivum L.) in 2001–2003, and evaluated the use of a SPAD-502 meter to measure crop N status in spring wheat. Sixteen N fertility treatments were used, including application of different rates of fertilizer N (0–160 kg N ha-1) applied pre-seeding (ZGS 0), at tillering (ZGS 21) and at shooting (ZGS 32) as ammonium nitrate. Split N application provided no benefit in terms of grain yield or apparent recovery of fertilizer N. Application of fertilizer N at ZGS 32 reduced crop yield and apparent recovery of fertilizer N compared with N application at ZGS 0. Application of fertilizer N at ZGS 21 reduced yield and apparent recovery of fertilizer N in grain in 2 of 3 yr, but had no effect on apparent recovery of fertilizer N in the above-ground plant. Delayed fertilizer N application generally increased grain protein. Fertilizer N can be applied at ZGS 21 as required to optimize grain yield provided at least some fertilizer N is applied prior to seeding; however, crop N status cannot reliably be assessed at this time using a SPAD-502 meter. Crop N status can be assessed at ZGS 32 using a SPAD-502 meter; however, fertilizer N application at this time primarily influences grain protein rather than grain yield. These results highlight the need for a means of predicting soil N mineralization potential in order to optimize grain yield in humid environments where carry-over of soil nitrate from the previous growing season is limited. Key words: Triticum aestivum; N mineralization; soil N supply; SPAD-502 meter, leaf chlorophyll index


2009 ◽  
Vol 89 (4) ◽  
pp. 403-411 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
S Brandt

Growing season rainfall affects fertilizer N recovery, particularly in semi-arid environments. However, the influence of rainfall distribution during the growing season is not well-understood. We conducted a 7-yr study (from 1997 to 2006) to assess this effect, and that of no-till (NT) vs. conventional tillage (CT), on fertilizer N recovery by spring wheat (Triticum aestivum L.) fertilized with 15N-labelled urea at 40 kg N ha–1 and grown on stubble on a Dark Brown Chernozem soil in Saskatchewan, Canada. Two of the seven experimental years had growing season rainfall close to normal, one was above normal and four were below normal. Tillage treatment did not affect 15N recovery by wheat; however, 15N recovery in the top 15 cm of soil averaged 47% under NT vs. 39% under CT (P = 0.02). Total N and 15N uptakes were most affected by "year" due to variation in growing season rainfall distribution. Excluding an ultra-low value of 3.8% (or 1.5 kg N ha–1) in 2002, due to extreme drought, 15N recovery by wheat averaged 47.5% (range 30–57%), and percent N derived from fertilizer was 12–20%. Rainfall in May correlated significantly with 15N and total N uptake (r = 0.605 and 0.699, respectively). The recovery of 15N in wheat head correlated negatively with June rainfall (r = –0.624), probably because more moisture increased soil N mineralization, which diluted the 15N pool. During grain filling, soil N uptake was 12–30 kg ha–1, compared with negligible amounts (< 7%) of 15N; however, about 15 kg ha–1 of 15N were remobilized vs. 34–74 kg ha–1 of soil N. It is concluded that, in this semi-arid region, fertilizer N uptake is influenced more by rainfall in May than other months of the growth period.Key words: 15N-labelled urea, fertilizer N recovery, N uptake, rainfall, remobilized N, tillage


2016 ◽  
Vol 192 ◽  
pp. 86-102 ◽  
Author(s):  
Cynthia A. Grant ◽  
John T. O’Donovan ◽  
Robert E. Blackshaw ◽  
K. Neil Harker ◽  
Eric N. Johnson ◽  
...  

2008 ◽  
Vol 28 (3) ◽  
pp. 245-254 ◽  
Author(s):  
K. Piikki ◽  
L. De Temmerman ◽  
K. Ojanperä ◽  
H. Danielsson ◽  
H. Pleijel

2001 ◽  
Vol 1 ◽  
pp. 673-681 ◽  
Author(s):  
Alan J. Franzluebbers ◽  
John A. Stuedemann

The fate of nitrogen (N) applied in forage-based agricultural systems is important for understanding the long-term production and environmental impacts of a particular management strategy. We evaluated the factorial combination of three types of N fertilization (inorganic, crimson clover [Trifolium incarnatum L.] cover crop plus inorganic, and chicken [Gallus gallus] broiler litter pressure and four types of harvest strategy (unharvested forage, low and high cattle [Bos Taurus] grazing pressure, and monthly haying in summer) on surface residue and soil N pools during the first 5 years of ̒Coastal̓ bermudagrass (Cynodon dactylon [L.] Pers.) management. The type of N fertilization used resulted in small changes in soil N pools, except at a depth of 0 to 2 cm, where total soil N was sequestered at a rate 0.2 g ‧ kg–1‧ year–11 greater with inorganic fertilization than with other fertilization strategies. We could account for more of the applied N under grazed systems (76–82%) than under ungrazed systems (35–71%). As a percentage of applied N, 32 and 48% were sequestered as total soil N at a depth of 0 to 6 cm when averaged across fertilization strategies under low and high grazing pressures, respectively, which was equivalent to 6.8 and 10.3 g ‧ m–2‧ year–1. Sequestration rates of total soil N under the unharvested-forage and haying strategies were negligible. Most of the increase in total soil N was at a depth of 0 to 2 cm and was due to changes in the particulate organic N (PON) pool. The greater cycling of applied N into the soil organic N pool with grazed compared with ungrazed systems suggests an increase in the long-term fertility of soil.


2002 ◽  
Vol 82 (2) ◽  
pp. 307-318 ◽  
Author(s):  
P. R. Miller ◽  
J. Waddington ◽  
C. L. McDonald ◽  
D. A. Derksen

Extension of the commonly used spring wheat (Triticum aestivum L.)-fallow rotation to include broadleaf crops requires information on their effects on a following wheat crop. We grew a spring wheat test crop on the stubbles of wheat and seven broadleaf crops: desi chickpea (Cicer arietinum L.), dry bean (Phaseolus vulgaris L.), dry pea (Pisum sativum L.), lentil (Lens culinaris L.), mustard (Brassica juncea L.), safflower (Carthamus tinctorius L.), and sunflower (Helianthus annuus L.). This study was conducted near Swift Current, SK, from 1993 to 1997, and Congress, SK, from 1995 to 1997. After harvest, soil water differed among crop stubbles and by sampling depth. To the 60-cm depth, only soil under dry bean stubble held more water (8 mm), while soil under lentil, desi chickpea, sunflower and safflower stubbles held less water (6, 8, 9 and 17 mm, respectively) than wheat stubble (P < 0.05). From 60 to 120 cm, soil under dry pea and dry bean held more water (7 and 10 mm, respectively), and under sunflower and safflower stubbles less (7 and 14 mm, respectively), than under wheat stubble (P < 0.05). Lentil, dry bean and dry pea stubbles averaged 5, 6 and 9 kg ha-1 greater soil N in the 0- to 120-cm soil depth than wheat stubble (P < 0.05). The average yield of wheat grown on the four pulse crop stubbles was 21% greater than yields on wheat stubble, but did not differ from the oilseed stubbles (P < 0.01). Compared to wheat stubble, wheat grown on broadleaf crop stubbles had higher grain protein concentrations, increasing by 8 and 5%, for pulses and oilseeds, respectively (P < 0.01). Nitrogen removal in the wheat test crop grain yield averaged 15 kg ha-1 for pulse stubbles compared with wheat stubble. Soil N contribution by pulse stubbles was an important factor contributing to wheat growth under a dryland cropping system on the northern Great Plains. Key words: Crop sequence, spring wheat, pulse crops, N cycling, water use


2019 ◽  
Vol 56 (3) ◽  
pp. 319-329 ◽  
Author(s):  
Jinshun Bai ◽  
Shaojun Qiu ◽  
Liang Jin ◽  
Dan Wei ◽  
Xinpeng Xu ◽  
...  

2007 ◽  
Vol 295 (1-2) ◽  
pp. 79-94 ◽  
Author(s):  
Katja Pörtl ◽  
Sophie Zechmeister-Boltenstern ◽  
Wolfgang Wanek ◽  
Per Ambus ◽  
Torsten W. Berger

Sign in / Sign up

Export Citation Format

Share Document