scholarly journals Long-term bare fallow soil reveals the temperature sensitivity of priming effect of the relatively stabilized soil organic matter

2022 ◽  
Author(s):  
Xiuwei Zhang ◽  
Biao Zhu ◽  
Fei-Hai Yu ◽  
Peng Wang ◽  
Weixin Cheng
2021 ◽  
Author(s):  
Xiuwei Zhang ◽  
Biao Zhu ◽  
Feihai Yu ◽  
Peng Wang ◽  
Weixin Cheng

Abstract Priming plays an important role in modifying the decomposition of soil organic matter (SOM), but there are large uncertainties in the temperature effect on priming mainly due to the variation in SOM stability. Long-term bare fallow offers a unique opportunity to isolate the relatively stabilized SOM pool and study its properties. We tested the temperature effect on priming of the relatively stabilized SOM pool by incubating soil samples collected from a bare fallow (representing the relatively stabilized SOM) and its adjacent old field (containing both stabilized SOM and labile SOM) at 10 and 20°C for 815 days. We amended the soil samples with C4 maize leaves to distinguish the CO2 source released from the soils (formed under C3 vegetation) and the substrate added (i.e. maize leaves) based on the natural abundance of δ13C. In all cases, there was a positive priming effect on native SOM decomposition when fresh organic matter (maize leaves) was added. The temperature sensitivity of priming effect (calculated as the difference in SOM decomposition due to the addition of maize leaves) in the bare fallow soil and the old field soil was quite different: increasing temperature significantly enhanced the magnitude of priming effect in the bare fallow soil, whereas had no effect on the magnitude of priming effect in the old field soil. The increase of the amount of microbial biomass C by maize leaves application was higher in the bare fallow soil than in the old field soil. Furthermore, for maize leaves-treated soil, temperature increase significantly increased the rate of microbial N mining throughout the incubation in the bare fallow soil, but had minor effect on microbial N mining in the old field soil at the end of incubation. We conclude that the priming effect of the relatively stabilized SOM was sensitive to temperature increase, which may be mainly driven by greater microbial growth and microbial demand for N. This work highlights the vulnerability of stabilized SOM to priming effect under global warming and reveals the potential role of microbes in regulating soil C dynamics under future climate change.


2013 ◽  
Vol 10 (3) ◽  
pp. 2089-2103 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Interactions between different qualities of soil organic matter (SOM) affecting their turnover are rarely represented in models. In this study, we propose three mathematical strategies at different levels of abstraction to represent those interactions. By implementing these strategies into the Introductory Carbon Balance Model (ICBM) and applying them to several scenarios of litter input, we show that the different levels of abstraction are applicable at different timescales. We present a simple one-parameter equation of substrate limitation that can straightforwardly be implemented into other models of SOM dynamics at decadal timescale. The study demonstrates how substrate quality interactions can explain patterns of priming effects, accelerate turnover in FACE experiments, and the slowdown of decomposition in long-term bare fallow experiments as an effect of energy limitation of microbial biomass. The mechanisms of those interactions need to be further scrutinized empirically for a more complete understanding. Overall, substrate quality interactions contribute to both understanding and quantitatively modelling SOM dynamics.


Geoderma ◽  
2017 ◽  
Vol 306 ◽  
pp. 89-98 ◽  
Author(s):  
N. Meyer ◽  
L. Bornemann ◽  
G. Welp ◽  
H. Schiedung ◽  
M. Herbst ◽  
...  

2008 ◽  
Vol 5 (1) ◽  
pp. 163-190 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify appropriate and inappropriate formulations.


2012 ◽  
Vol 9 (12) ◽  
pp. 17167-17201 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Interactions between different qualities of soil organic matter (SOM) affecting their turnover are rarely represented in models. In this study we propose three mathematical strategies at different levels of abstraction for representing those interactions. Implementing these strategies into the Introductory Carbon Balance Model (ICBM) and applying them to several scenarios of litter input show that the different levels of abstraction are applicable on different time scales. We present a simple one-parameter equation of substrate limitation applicable at decadal time scale that is straightforward to implement into other models of SOM dynamics. We show how substrate quality interactions can explain priming effects, acceleration of turnover times in FACE experiments, and the slowdown of decomposition in long-term bare fallow experiments as an effect of energy limitation of microbial biomass. The mechanisms of those interactions need to be further scrutinized empirically for a more complete understanding. Overall, substrate quality interactions offer a valuable way of understanding and quantitatively modelling SOM dynamics.


2008 ◽  
Vol 5 (3) ◽  
pp. 749-759 ◽  
Author(s):  
T. Wutzler ◽  
M. Reichstein

Abstract. Decomposition of soil organic matter (SOM) is limited by both the available substrate and the active decomposer community. The understanding of this colimitation strongly affects the understanding of feedbacks of soil carbon to global warming and its consequences. This study compares different formulations of soil organic matter (SOM) decomposition. We compiled formulations from literature into groups according to the representation of decomposer biomass on the SOM decomposition rate a) non-explicit (substrate only), b) linear, and c) non-linear. By varying the SOM decomposition equation in a basic simplified decomposition model, we analyzed the following questions. Is the priming effect represented? Under which conditions is SOM accumulation limited? And, how does steady state SOM stocks scale with amount of fresh organic matter (FOM) litter inputs? While formulations (a) did not represent the priming effect, with formulations (b) steady state SOM stocks were independent of amount of litter input. Further, with several formulations (c) there was an offset of SOM that was not decomposed when no fresh OM was supplied. The finding that a part of the SOM is not decomposed on exhaust of FOM supply supports the hypothesis of carbon stabilization in deep soil by the absence of energy-rich fresh organic matter. Different representations of colimitation of decomposition by substrate and decomposers in SOM decomposition models resulted in qualitatively different long-term behaviour. A collaborative effort by modellers and experimentalists is required to identify formulations that are more or less suitable to represent the most important drivers of long term carbon storage.


2018 ◽  
Author(s):  
Suzanne Lutfalla ◽  
Pierre Barré ◽  
Sylvain Bernard ◽  
Corentin Le Guillou ◽  
Julien Alléon ◽  
...  

Abstract. The mineral matrix, particularly clay-sized minerals, protects soil organic matter (SOM) from decomposition by microorganisms. Here we report the characterization of SOM and associated minerals over decades of biodegradation, in a French long-term bare fallow (LTBF) experiment started in 1928. The amounts of carbon (C) and nitrogen (N) declined with time for six fractions (sand, coarse silt, fine silt, coarse clays, intermediate clays and fine clays). The C : N ratios of SOM associated to silt fractions remained constant whereas they significantly decreased in clays, reaching very low values in intermediate and fine clays (C : N 


Sign in / Sign up

Export Citation Format

Share Document