fresh organic matter
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 34)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 937 (3) ◽  
pp. 032106
Author(s):  
N Sakara ◽  
V Leunov ◽  
T Tarasova ◽  
V Oznobikhin

Abstract The main elements of the biologization of the agricultural system in the vegetable growing of the Russian Far East are described: pre-filling with fresh organic matter in the repair fields and on the layer of perennial grasses, with the introduction of crop rotations with sideral steam, the introduction of agrotechnical methods that ensure a zero or positive balance of humus in the soil of a vegetable plantation.


2021 ◽  
Vol 8 ◽  
Author(s):  
Theresa Barthelmeß ◽  
Florian Schütte ◽  
Anja Engel

Major uncertainties in air-sea gas flux parameterizations may arise from a yet unpredictable sea surface microlayer (SML). Its influence on gas exchange is twofold as organic matter, in particular surfactants, on one side and organisms enriched in the SML on the other can alter air-sea gas fluxes. However, spatial heterogeneity of the SML and its potential consequences for gas exchange are not well understood. This study examines the SML’s surfactant pool and the dynamics of microbial enrichment across the sharp hydrological front of a newly upwelled filament off Mauritania. The front was marked by a distinct decrease in temperature and salinity compared to the stratified water column outside the filament. Distinct chemical and microbial SML properties were observed and associated with the filament. Overall, organic matter in the SML was significantly higher concentrated inside the filament and in equivalence to the underlying water. Degradation indices derived from total amino acids (TAA) composition indicated production of fresh organic matter inside and increased degradation outside the filament. Moreover, a shift in the microbial community was observed, for instance Synechococcus spp. prevailed outside the filament. Autotrophic and heterotrophic microorganisms preferably colonized the SML outside the filament. Organic matter enrichment in the SML depended largely on the chemical nature of biomolecules. Total organic carbon (TOC), total nitrogen and total combined carbohydrates were only slightly enriched while glucose, TAA and surfactants were considerably enriched in the SML. Surfactant concentration was positively correlated to TAA, in particular to arginine and glutamic acid, indicating that fresh organic matter components enhanced surface activity. Further, TOC and surfactant concentration correlated significantly (r2 = 0.47, p-value < 0.001). The lower limit of this linear correlation hits approximately the lowest TOC concentration expected within the global surface ocean. This suggests that surfactants are primarily derived from autochthonous production and most refractory components are excluded. Using a previously established relationship between surfactants and CO2 gas exchange (Pereira et al., 2018), we estimated that surfactants suppressed gas exchange by 12% inside the filament. This could be of relevance for freshly upwelled filaments, which are often supersaturated in greenhouse gases.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6997
Author(s):  
Karol Kupryaniuk ◽  
Agnieszka Wójtowicz ◽  
Jakub Mazurkiewicz ◽  
Tomasz Słowik ◽  
Arkadiusz Matwijczuk

The article presents the research made on the effects of methods of pressure-thermal agglomeration of corn bran, as well as the influence of processing parameters on selected physicochemical properties and biogas efficiency. Corn bran moistened to four levels of moisture content was used for the tests: 20%, 25%, 30% and 35% of dry matter. The pressure-thermal treatment was carried out with the use of a Brikol SJ25 pellet maker and a TS-45 single-screw extruder. In the tests of the extrusion-cooking process, three rotational speeds of the extruder screw were applied: 70, 90 and 110 rpm. The following characteristics were examined: efficiency of the extrusion-cooking and pelleting process, as well as the energy consumption. The water absorption index (WAI), the water solubility index (WSI), bulk density, kinetic strength, structure analysis by the ART/FTIR method, energy potential and the efficiency of cumulated biogas and cumulated methane per dry mass, as well as fresh mass and fresh organic matter and a series of microscopic pictures were completed. The analysis of the ATR/FTIR infrared spectra of the tested pelleted and extruded samples showed clear changes at the molecular level. Biogas production of extruded corn bran increased by several percent, as compared to untreated material.


Author(s):  
Lyudmila N. Purtova

The differences in the qualitative composition of organic matter in the soils of natural and anthropogenically transformed landscapes in the south of Primorye were established by the method of chemodestructive fractionation (CDF). The lowest indices of the easily oxidizable part (EOP) in the organic matter are typical for soils of technogenic landscapes (embryozems) with very low humus content due to low reserves of aboveground phytomass and the supply of fresh organic matter of plant origin. Embryozems are characterized by a low supply of humus with nitrogen. Higher EOP values are characteristic of soils of natural landscapes (burozems) with average humus content. In burozems, oxidative and eluvial processes are balanced by humus formation. In the soils of agrogenic landscapes (agro-dark-humus podbeles, agro-dark-humus gley soils) with low humus content, the proportion of EOP decreased and, at the same time, the proportion of the hardly oxidized part in the composition of soil organic matter increased. Some increase in EOP was recorded in agro-dark-humus gley soils with rump crops, which is associated with the intensification of the transformation processes of organic matter and the transition of organic matter from the difficult-to-oxidize to the easily oxidized part. Based on the data obtained on the qualitative composition of organic matter, the CDF method implies that in the soils of natural landscapes (burozems), the proportion of EOP exceeded that in comparison with soils of agrogenic (agro-dark-humus podbely, agro-dark-humus gley) and technogenic landscapes (em-briozems). This indicates differences in the conditions of soil formation and the ongoing oxidative and humus-forming processes.


2021 ◽  
Author(s):  
Brian Scott ◽  
Andrew Baldwin ◽  
Stephanie Yarwood

Abstract. Methane (CH4) emissions are a potent contributor to global warming and wetlands can be a significant CH4 source. In a microcosm study we evaluated how the practice of amending soils with organic matter as part of wetland restoration projects may affect CH4 production potential. Organic amendments including hay, manure, biosolids and compost were evaluated at three different levels. Using 1-liter glass microcosms, we measured the production of biogenic gases over 60 days in two soils, a sandy loam (SL) and a sandy clay loam (SCL). Fresh organic amendments increased CH4 production, leading to potentially higher global warming potential and wetland C loss, particularly in sandy soils. Organic amendments increased biogenic gas production in two sequential steady state phases: Phase 1 produced some CH4 but was mostly carbon dioxide (CO2) followed by Phase 2, two to six weeks later, with much higher total gas and nearly equal amounts of CH4 and CO2. The CH4 from the SCL soil ranged from 0.003–0.8 cc/Kg/day in Phase 1 to 0.75–28 in Phase 2 and the SL range from 0.03–16 cc/Kg/day in Phase 1 to 1.8–64 in Phase 2. We had set out to identify an organic amendment that would promote iron (Fe) reduction without excess CH4, but amendments were not needed to produce Fe and make soils hydric. Adding fresh organic matter (hay) resulted in both excess Fe2+ and CH4 whereas composted amendments had little effect. The potential for excess methanogenesis should be taken into account when considering organic matter amendments in mitigation wetlands.


2021 ◽  
Vol 18 (12) ◽  
pp. 3605-3629
Author(s):  
Jaard Hauschildt ◽  
Soeren Thomsen ◽  
Vincent Echevin ◽  
Andreas Oschlies ◽  
Yonss Saranga José ◽  
...  

Abstract. Filaments and fronts play a crucial role for a net offshore and downward nutrient transport in Eastern Boundary Upwelling Systems (EBUSs) and thereby reduce regional primary production. Most studies on this topic are based on either observations or model simulations, but only seldom are both approaches are combined quantitatively to assess the importance of filaments for primary production and nutrient transport. Here we combine targeted interdisciplinary shipboard observations of a cold filament off Peru with submesoscale-permitting (1/45∘) coupled physical (Coastal and Regional Ocean Community model, CROCO) and biogeochemical (Pelagic Interaction Scheme for Carbon and Ecosystem Studies, PISCES) model simulations to (i) evaluate the model simulations in detail, including the timescales of biogeochemical modification of the newly upwelled water, and (ii) quantify the net effect of submesoscale fronts and filaments on primary production in the Peruvian upwelling system. The observed filament contains relatively cold, fresh, and nutrient-rich waters originating in the coastal upwelling. Enhanced nitrate concentrations and offshore velocities of up to 0.5 m s−1 within the filament suggest an offshore transport of nutrients. Surface chlorophyll in the filament is a factor of 4 lower than at the upwelling front, while surface primary production is a factor of 2 higher. The simulation exhibits filaments that are similar in horizontal and vertical scale compared to the observed filament. Nitrate concentrations and primary production within filaments in the model are comparable to observations as well, justifying further analysis of nitrate uptake and subduction using the model. Virtual Lagrangian floats were released in the subsurface waters along the shelf and biogeochemical variables tracked along the trajectories of floats upwelled near the coast. In the submesoscale-permitting (1/45∘) simulation, 43 % of upwelled floats and 40 % of upwelled nitrate are subducted within 20 d after upwelling, which corresponds to an increase in nitrate subduction compared to a mesoscale-resolving (1/9∘) simulation by 14 %. Taking model biases into account, we give a best estimate for subduction of upwelled nitrate off Peru between 30 %– 40 %. Our results suggest that submesoscale processes further reduce primary production by amplifying the downward and offshore export of nutrients found in previous mesoscale studies, which are thus likely to underestimate the reduction in primary production due to eddy fluxes. Moreover, this downward and offshore transport could also enhance the export of fresh organic matter below the euphotic zone and thereby potentially stimulate microbial activity in regions of the upper offshore oxygen minimum zone.


2021 ◽  
Author(s):  
Galina Zelenskay ◽  
Nikolay Zelenskiy ◽  
Andrey Abramov

This study examined the use of intermediate groundcover sideral crops, such as perennial leguminous herbs, to conserve soil fertility though enriching the soil with fresh organic matter, an effective and low-cost method. Studies show that the use of direct sowing technology allows the preservation of all plant residues on the soil surface, which ensures the best accumulation of snow in the winter. Through the preservation of numerous biodrenes from the root system of sweet clover and other cultivated crops, as well as soil channels from earthworms, this direct sowing technology increases the moisture content of the soil and reduces moisture loss. The effectiveness of various soybean, corn and sunflower cultivation technologies with a minimal tillage period was studied. When sweet clover was used for green manure in April, the maximum yield was obtained, and the maximum yield for corn (57.3-82.3 c/ha) was obtained using the no-till technology. As a consequence, the ground cover crop had a noticeable effect on the yield of the second crop rotation - spring wheat, which had a higher yield. The use of direct sowing technology with sweet clover as green manure provided the highest yield of spring wheat - from 37.2 to 39.8 c / ha. The grain quality of spring wheat, placed as the second crop after melilot on green manure, was higher, both under no-till technology and under mini-till technology. Keywords: biologization, soil fertility, green manure, clover, direct sowing, productivity


2021 ◽  
Vol 9 ◽  
Author(s):  
George Tanski ◽  
Lisa Bröder ◽  
Dirk Wagner ◽  
Christian Knoblauch ◽  
Hugues Lantuit ◽  
...  

Warming air and sea temperatures, longer open-water seasons and sea-level rise collectively promote the erosion of permafrost coasts in the Arctic, which profoundly impacts organic matter pathways. Although estimates on organic carbon (OC) fluxes from erosion exist for some parts of the Arctic, little is known about how much OC is transformed into greenhouse gases (GHGs). In this study we investigated two different coastal erosion scenarios on Qikiqtaruk – Herschel Island (Canada) and estimate the potential for GHG formation. We distinguished between a delayed release represented by mud debris draining a coastal thermoerosional feature and a direct release represented by cliff debris at a low collapsing bluff. Carbon dioxide (CO2) production was measured during incubations at 4°C under aerobic conditions for two months and were modeled for four months and a full year. Our incubation results show that mud debris and cliff debris lost a considerable amount of OC as CO2 (2.5 ± 0.2 and 1.6 ± 0.3% of OC, respectively). Although relative OC losses were highest in mineral mud debris, higher initial OC content and fresh organic matter in cliff debris resulted in a ∼three times higher cumulative CO2 release (4.0 ± 0.9 compared to 1.4 ± 0.1 mg CO2 gdw–1), which was further increased by the addition of seawater. After four months, modeled OC losses were 4.9 ± 0.1 and 3.2 ± 0.3% in set-ups without seawater and 14.3 ± 0.1 and 7.3 ± 0.8% in set-ups with seawater. The results indicate that a delayed release may support substantial cycling of OC at relatively low CO2 production rates during long transit times onshore during the Arctic warm season. By contrast, direct erosion may result in a single CO2 pulse and less substantial OC cycling onshore as transfer times are short. Once eroded sediments are deposited in the nearshore, highest OC losses can be expected. We conclude that the release of CO2 from eroding permafrost coasts varies considerably between erosion types and residence time onshore. We emphasize the importance of a more comprehensive understanding of OC degradation during the coastal erosion process to improve thawed carbon trajectories and models.


2021 ◽  
Author(s):  
Susanne K Woche ◽  
Stefan Dultz ◽  
Robert Mikutta ◽  
Klaus Kaiser ◽  
Georg Guggenberger

<p>Formation of soil microaggregates (SMA) is a surface-driven process and depends on mineral cementing and organic gluing agents. Yet, the role of plants in soil microaggregation by input of fresh organic matter remains little understood. In a mesocosm experiment silty Luvisol topsoil (<250 µm; original soil material) was incubated in absence (bare soil) and presence of plants (Festuca) and water-stable free and occluded SMA were isolated after 4, 12, and 30 weeks and investigated for the surface chemical composition by X-ray photoelectron spectroscopy (XPS) and for wetting properties by contact angle determination.</p><p>Compared to the original soil, the surfaces of both free and occluded SMA tended to smaller O and larger C contents, thus a smaller O/C ratio, along with a slight increase in initial contact angle from about 10° (original soil) to about 20° (SMA). The O/C ratio decreased slightly further from 4 to 12 weeks, especially for bare soil without plants. Slightly greater C contents were detected for occluded than for free SMA, probably hinting at higher retention of organic matter on surfaces of microaggregates entrained in larger soil structures. For bare soil, a slightly greater N content was observed for free SMA while in the presence of Festuca free and occluded SMA had same N contents.</p><p>Regardless of the presence of Festuca, C speciation indicated a lower proportion (in % of total C) of C=O/O-C-O and a higher proportion of C - C/C -  H species for occluded than for free SMA, probably indicating less altered organic matter at the surfaces of occluded SMA. While the proportion of C=O/O-C-O species slightly decreased, that of C- C/C-H species slightly increased towards the end of the incubation. This may hint at some preferences in microbial respiration with respect to C compounds and formation of microbial metabolites. From N speciation a higher ratio between protonated and non-protonated organic N species (N<sub>p</sub>/N<sub>np</sub>) was indicated for Festuca than for bare soil after 4 and for 30 weeks of incubation, i.e., the presence of plants seems to impact N compounds present. The N<sub>p</sub>/N<sub>np </sub>ratio tended to decrease after 30 weeks compared to 4 weeks for both treatments, hinting on changes in N species present.</p><p>In summary, aside some effect on N species present, results indicate rather incubation and SMA origin (free, occluded) than the presence of plants (Festuca) to impact surface chemical composition of the tested SMA. This suggests no defined contribution of plants and their products to formation of 250-53 µm-sized SMA.</p>


Sign in / Sign up

Export Citation Format

Share Document