maize leaves
Recently Published Documents


TOTAL DOCUMENTS

671
(FIVE YEARS 92)

H-INDEX

56
(FIVE YEARS 5)

Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1216
Author(s):  
Mingfeng Huang ◽  
Guoqin Xu ◽  
Junyu Li ◽  
Jianping Huang

Northern leaf blight (NLB) is a serious disease in maize which leads to significant yield losses. Automatic and accurate methods of quantifying disease are crucial for disease identification and quantitative assessment of severity. Leaf images collected with natural backgrounds pose a great challenge to the segmentation of disease lesions. To address these problems, we propose an image segmentation method based on YOLACT++ with an attention module for segmenting disease lesions of maize leaves in natural conditions in order to improve the accuracy and real-time ability of lesion segmentation. The attention module is equipped on the output of the ResNet-101 backbone and the output of the FPN. The experimental results demonstrate that the proposed method improves segmentation accuracy compared with the state-of-the-art disease lesion-segmentation methods. The proposed method achieved 98.71% maize leaf lesion segmentation precision, a comprehensive evaluation index of 98.36%, and a mean Intersection over Union of 84.91%; the average processing time of a single image was about 31.5 ms. The results show that the proposed method allows for the automatic and accurate quantitative assessment of crop disease severity in natural conditions.


2021 ◽  
Vol 22 (23) ◽  
pp. 12986
Author(s):  
Shiying Geng ◽  
Zhaobin Ren ◽  
Lijun Liang ◽  
Yumei Zhang ◽  
Zhaohu Li ◽  
...  

Salt stress negatively affects maize growth and yield. Application of plant growth regulator is an effective way to improve crop salt tolerance, therefore reducing yield loss by salt stress. Here, we used a novel plant growth regulator B2, which is a functional analogue of ABA. With the aim to determine whether B2 alleviates salt stress on maize, we studied its function under hydroponic conditions. When the second leaf was fully developed, it was pretreated with 100 µM ABA, 0.01 µM B2, 0.1 µM B2, and 1 µM B2, independently. After 5 days treatment, NaCl was added into the nutrient solution for salt stress. Our results showed that B2 could enhance salt tolerance in maize, especially when the concentration was 1.0 µMol·L−1. Exogenous application of B2 significantly enhanced root growth, and the root/shoot ratio increased by 7.6% after 6 days treatment under salt stress. Compared with control, the ABA level also decreased by 31% after 6 days, which might have resulted in the root development. What is more, B2 maintained higher photosynthetic capacity in maize leaves under salt stress conditions and increased the activity of antioxidant enzymes and decreased the generation rate of reactive oxygen species by 16.48%. On the other hand, B2 can enhance its water absorption ability by increasing the expression of aquaporin genes ZmPIP1-1 and ZmPIP1-5. In conclusion, the novel plant growth regulator B2 can effectively improve the salt tolerance in maize.


2021 ◽  
Vol 190 ◽  
pp. 106461
Author(s):  
Chunling Cao ◽  
Tianli Wang ◽  
Maofang Gao ◽  
Yang Li ◽  
Dandan Li ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 195-201
Author(s):  
Harman Hamidson ◽  
Riski Anwar Efendi

In South Sumatra, the ​​freshwater swamps is 157,846 hectares, with this wide freshwater swamps, it can be used for crops food  cultivation, one of which is maize. The purpose of this study was to provide information on the identification and attack of maize disease in freshwater swamps of South Sumatra. The research method was purposive sampling. The results of the study identification that the symptoms of maize leaf rust attack, seen from the physiology of maize leaves, were the lumps or pustules of orange color such as rust and the symptoms of maize leaf blight seen from the physiology of maize leaves, were small oval brownish lines like burning leaves. The leaf rust disease had an attack rate of 90% and the maize leaf blight reached 98%. Based on the results of this study, the main disease of maize attacking in the generative phase was the leaf rust (Puccinia polysora) and maize leaf blight (Bipolaris maydis).


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1216
Author(s):  
Lucia Ramos Romero ◽  
Dagmar Tacke ◽  
Birger Koopmann ◽  
Andreas von Tiedemann

In the last decade, the cultivated area of maize has increased in Central Europe due to its high yield potential and diverse uses for feed and bio-energy. This has led to more intense maize cultivation, with narrowed crop rotations resulting in the increase in maize leaf diseases. During 2012 and 2013, an inventory of maize leaf spot diseases was carried out in various regions in Central Europe. In addition to the major leaf pathogens, isolates of Phoma-like species were obtained from oval to elliptical spots on leaves or found in lesions produced by other leaf pathogens. A total of 16 representative Phoma-like strains were characterised for their pathogenicity on maize leaves, for their morphological characteristics and with a phylogenetic analysis based on multilocus sequence analysis using part of the actin (ACT), calmodulin (CAL), β-tubulin (TUB), internal transcribed spacer (ITS) region of ribosomal DNA and large subunit ribosomal RNA (LSU) genes. The strains were grouped into four clades, and morphological studies supported this classification for most of them. Strains were compared with six reference Phoma-like species strains from the Westerndijk Fungal Biodiversity Institute collection reported to colonise maize. The pathogenic group of strains from our collection (after completion of Koch’s postulates) did not cluster with any of these species, indicating a different and novel Phoma-like species infecting maize leaves. To our knowledge, this is the first study dissecting the Phoma species complex on maize leaves in Central Europe.


Plant Disease ◽  
2021 ◽  
Author(s):  
Xi Xu ◽  
Li Zhang ◽  
Xilang Yang ◽  
Hanshui Cao ◽  
Jingjing Li ◽  
...  

Maize is a major economic crop worldwide. Maize can be infected by Alternaria species causing leaf blight that can result in significant economic losses. In this study, 168 Alternaria isolates recovered from symptomatic maize leaves were identified based on morphological characteristics, pathogenicity, and multi-locus sequence analyses of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), the internal transcribed spacer of ribosomal DNA (rDNA ITS), the RNA polymerase II second largest subunit (RPB2), and histone 3 (HIS3). Maize isolates grouped to four Alternaria species including Alternaria tenuissima, A. alternata, A. burnsii, and Alternaria sp. Notably, A. tenuissima (71.4%) was the most prevalent of the four isolated species, followed by A. alternata (21.5%), Alternaria sp. (4.1%), and A. burnsii (3.0%). Pathogenicity tests showed that all four Alternaria species could produce elliptic to nearly round, or strip lesions on leaves of maize, gray white to dry white in the lesions center and reddish brown in the edge. The average disease incidence (58.47%) and average disease index (63.55) of maize leaves inoculated with A. alternata were significantly higher than levels resulting from A. tenuissima (55.28% and 58.49), Alternaria sp. (55.34% and 58.75), and A. burnsii (56% and 55). Haplotype analyses indicated that there were 14 haplotypes of A. tenuissima and 5 haplotypes of A. alternata in Heilongjiang province and suggested the occurrence of a population expansion. Results of the study showed that Alternaria species associated with maize leaf blight in Heilongjiang province are more diverse than those have been previously reported. This is the first report globally of A. tenuissima, A. burnsii, and an unclassified Alternaria species as causal agents of leaf blight on maize.


2021 ◽  
Vol 20 (9) ◽  
pp. 2360-2371
Author(s):  
Xiao-gui LIANG ◽  
Si SHEN ◽  
Zhen GAO ◽  
Li ZHANG ◽  
Xue ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document