Differential Expression of Proteins in Response to Molybdenum Deficiency in Winter Wheat Leaves Under Low-Temperature Stress

2014 ◽  
Vol 32 (5) ◽  
pp. 1057-1069 ◽  
Author(s):  
Xuecheng Sun ◽  
Qiling Tan ◽  
Zhaojun Nie ◽  
Chengxiao Hu ◽  
Yongqiang An
1995 ◽  
Vol 37 (4) ◽  
Author(s):  
I. A. Yaneva ◽  
R. V. Vunkova-Radeva ◽  
K. L. Stefanov ◽  
A. S. Tsenov ◽  
T. P. Petrova ◽  
...  

1988 ◽  
Vol 66 (8) ◽  
pp. 1610-1615 ◽  
Author(s):  
D. A. Gaudet ◽  
T. H. H. Chen

The relationship between snow mold resistance and freezing resistance was studied under controlled-environment conditions, using winter wheat (Triticum aestivum L. em. Thell) cultivars varying in freezing resistance and resistance to cottony snow mold (Coprinus psychromorbidus Redhead & Traquair). Cultivars varying in freezing resistance were equally susceptible to C. psychromorbidus. There existed a negative relationship between snow mold resistance and freezing resistance. Sublethal, subzero freezing temperatures between −3 and −12 °C predisposed the winter wheat cultivar 'Winalta' to increased damage by C. psychromorbidus. A synergistic effect resulting in increased mortality was observed when winter wheat plants received a combination of low-temperature stress and inoculation with C. psychromorbidus. In hardened winter wheat plants, sublethal levels of snow mold damage following 6 weeks incubation with C. psychromorbidus resulted in a reduction in freezing resistance or LT50 (50% killing temperature) of approximately 7 °C compared with the noninoculated controls. The possible role of low-temperature stress on the susceptibility of winter wheats to C. psychromorbidus and of snow mold infection on the retention of freezing resistance in winter wheats during winter in the central and northern Canadian prairies is discussed.


2020 ◽  
Vol 107 (4) ◽  
pp. 329-336
Author(s):  
Andrius Aleliūnas ◽  
Kristina Jaškūnė ◽  
Gražina Statkevičiūtė ◽  
Gabija Vaitkevičiūtė ◽  
Gintaras Brazauskas ◽  
...  

2021 ◽  
Author(s):  
Ziyi Zhao ◽  
Baozhong Hu ◽  
Xu Feng ◽  
Fenglan li ◽  
Fumeng He ◽  
...  

Abstract BackgroundLow temperature is an important factor that influences the ability of winter wheat to safely overwinter. Excessive low temperatures restrict the regrowth of winter wheat, thus decreasing agricultural output. Non-enzymatic expansins, which are related to plant growth, have been reported to respond to drought, salinity, and low temperature stress. We obtained an expansin gene, TaEXPA9, that is induced by low temperature from a transcriptome analysis of ‘Dongnong winter wheat no. 2’—a winter wheat with high cold hardiness—but the expression pattern and function of this gene were unknown. We therefore analyzed the expression patterns of TaEXPA9-A/B/D in D2 in response to different abiotic stresses and exogenous phytohormone treatments in different organs. The entire length of TaEXPA9-A/B/D was obtained, and green fluorescent labeling was used for subcellular localization analysis of TaEXPA9-A/B/D on onion epidermis. The 35S::TaEXPA9-A/B/D expression vector was constructed, and an overexpression transgenic Arabidopsis thaliana line was obtained to examine the effects of the homologs of this expansin on plant growth and low temperature stress resistance. ResultsThe results showed that TaEXPA9-A/B/D transcription significantly increased at 4°C low temperature stress, its expression level was higher in the roots, and TaEXPA9-A/B/D was localized to the cell wall. The roots were well-developed in the overexpression A. thaliana, and the growth-related markers and setting rate were better than in the wild-type. Recovery was stronger in the overexpression plants after frost stress. At 4°C low temperature stress, the antioxidant enzyme activity and osmoregulatory substance content in the TaEXPA9-A/B/D-overexpressing A. thaliana plants were significantly higher than in the wild-type plants, and the degree of membrane lipid peroxidation was lower. ConclusionsIn summary, TaEXPA9-A/B/D participates in the low-temperature stress response and may increase the scavenging of reactive oxygen species caused by low temperature stress through the protective enzyme system. Additionally, TaEXPA9-A/B/D can increase the levels of small molecular organic substances to resist osmotic stress caused by low temperature.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
李瑞雪 LI Ruixue ◽  
金晓玲 JIN Xiaoling ◽  
胡希军 HU Xijun ◽  
汪结明 WANG Jieming ◽  
罗峰 LUO Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document