A tunable nonlinear plasmonic multiplexer/demultiplexer device based on nanoscale ring resonators

Author(s):  
Morteza Mansuri ◽  
Ali Mir ◽  
Ali Farmani
Keyword(s):  
Nano Letters ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 6357-6363 ◽  
Author(s):  
Łukasz Dusanowski ◽  
Dominik Köck ◽  
Eunso Shin ◽  
Soon-Hong Kwon ◽  
Christian Schneider ◽  
...  

2005 ◽  
Vol 45 (4) ◽  
pp. 294-295 ◽  
Author(s):  
Aaron D. Scher ◽  
Christopher T. Rodenbeck ◽  
Kai Chang

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Asghar Askarian

Abstract In this study, we are going to design all optical 1-bit comparator by combining wave interference and threshold switching methods. The final structure composed of two nonlinear ring resonators and seven waveguides. The functionality of the suggested logical structure is analyzed and simulated by using plane wave expansion (PWE) and finite difference time domain (FDTD) methods. According to results, the proposed all optical 1-bit comparator has faster response and smaller footprint than all previous works. The maximum ON-OFF contrast ratio, delay time and area of the suggested optical comparator are about 16.67 dB, 1.8 ps, and 513 µm2, respectively.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamed Azhdari ◽  
Sahel Javahernia

Abstract Increasing the speed of operation in all optical signal processing is very important. For reaching this goal one needs high speed optical devices. Optical half adders are one of the important building blocks required in optical processing. In this paper an optical half adder was proposed by combining nonlinear photonic crystal ring resonators with optical waveguides. Finite difference time domain method wase used for simulating the final structure. The simulation results confirmed that the rise time for the proposed structure is about 1 ps.


Silicon ◽  
2021 ◽  
Author(s):  
Mohammad Moradi ◽  
Masoud Mohammadi ◽  
Saeed Olyaee ◽  
Mahmood Seifouri

Sign in / Sign up

Export Citation Format

Share Document