Protective effect of supplemental low intensity white light on ultraviolet-B exposure-induced impairment in cyanobacterium Spirulina platensis: formation of air vacuoles as a possible protective measure

2005 ◽  
Vol 85 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Subramanyam Rajagopal ◽  
Cosmin Sicora ◽  
Zsuzsanna Várkonyi ◽  
László Mustárdy ◽  
Prasanna Mohanty
2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Robert N Correll ◽  
Petra Eder ◽  
Adam R Burr ◽  
Sanda Despa ◽  
Jennifer Davis ◽  
...  

The Na+/K+ ATPase (NKA) directly regulates intracellular Na+ levels, which indirectly regulate Ca2+ levels by controlling flux through the Na+/Ca2+ exchanger (NCX1). Elevated Na+ levels have been reported during heart failure, which permits some degree of reverse mode Ca2+ entry through NCX1 and less efficient Ca2+ clearance. To determine if lower intracellular Na+ levels would enhance forward-mode Ca2+ clearance and prevent reverse-mode Ca2+ entry through NCX1 as a protective measure, we generated cardiac-specific transgenic mice overexpressing either the NKA-α1 or α2 isoform and subjected them to pressure overload hypertrophic stimulation. We found that while increased expression of the NKA-α1 isoform had no protective effect, overexpression of NKA-α2 significantly decreased cardiac hypertrophy after pressure overload at 2, 10 and 16 weeks of stimulation. Remarkably, total NKA protein expression was not altered in either of these 2 transgenic models, as increased expression of one isoform led to a concomitant decrease in the other endogenous isoform. While total NKA ATPase activity and intracellular Na+ levels were unchanged in either overexpression model, and both showed reduced Ca2+ transient amplitudes and sarcoplasmic reticulum Ca2+ load, only NKA-α2 overexpression led to faster removal of bulk Ca2+ from the cytosol in a manner requiring NCX1 activity. This increased NCX1 activity, though correlated with improved outcome after pressure overload, did not affect signaling through Ca2+-sensitive signaling pathways such as calcineurin/nuclear factor of activated T-cells, Ca2+/calmodulin-dependent kinase II, or protein kinase Cα. Overexpression of NKA-α2 did, however, result in reduced expression of phospholemman (PLM), an inhibitor of NKA activity (when dephosphorylated) and NCX1 activity (when phosphorylated). Our results suggest that the protective effect produced by increased expression of NKA-α2 after pressure overload is likely due to: 1) Na+ regulation in a unique signaling microdomain distinct from NKA-α1, and 2) downregulation of PLM expression that removes a negative regulator of NCX1 activity, both leading to preservation of forward-mode NCX1 activity during disease, in association with optimized cardiac function.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1458 ◽  
Author(s):  
Yashu Chen ◽  
Fenghong Huang ◽  
David Julian McClements ◽  
Bijun Xie ◽  
Zhida Sun ◽  
...  

The potential protective effect of nanoliposomes loaded with lotus seedpod oligomeric procyanidin (LSOPC) against melanogenesis and skin damaging was investigated. Fluorescence spectroscopy showed that, after encapsulation, the LSOPC-nanoliposomes still possessed strong inhibitory effects against melanogenesis, reducing the activity of both monophenolase and diphenolase. Molecular docking indicated that LSOPC could generate intense interactive configuration with tyrosinase through arene–H, arene–arene, and hydrophobic interaction. An ultraviolet radiated cell-culture model (human foreskin fibroblast cell (HFF-1)) was used to determine the protective effects of the LSOPC-nanoliposomes against skin aging and damage. Results showed that LSOPC-nanoliposomes exerted the highest protective effects against both ultraviolet B (UVB) and ultraviolet A (UVA) irradiation groups compared with non-encapsulated LSOPC and a control (vitamin C). Superoxide dismutase (SOD) and malonaldehyde (MDA) assays demonstrated the protection mechanism may be related to the anti-photooxidation activity of the procyanidin. Furthermore, a hydroxyproline assay suggested that the LSOPC-nanoliposomes had a strong protective effect against collagen degradation and/or synthesis after UVA irradiation.


2014 ◽  
Vol 38 (3) ◽  
pp. 891-900 ◽  
Author(s):  
Jian Zheng ◽  
Mei Jing Piao ◽  
Ki Cheon Kim ◽  
Cheng Wen Yao ◽  
Ji Won Cha ◽  
...  

Forests ◽  
2016 ◽  
Vol 7 (12) ◽  
pp. 251 ◽  
Author(s):  
Haiqing Hu ◽  
Zhenbao Zhou ◽  
Xiaoxin Sun ◽  
Zhonghua Zhang ◽  
Qinghuan Meng

Sign in / Sign up

Export Citation Format

Share Document