Variation in cell size of the diatom Coscinodiscus granii influences photosynthetic performance and growth

2018 ◽  
Vol 137 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Dong Yan ◽  
John Beardall ◽  
Kunshan Gao
2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2019 ◽  
Vol 83 (3) ◽  
pp. 295-308
Author(s):  
MG Weinbauer ◽  
S Suominen ◽  
J Jezbera ◽  
ME Kerros ◽  
S Marro ◽  
...  

Author(s):  
Zsuzsanna Márton ◽  
Bianka Csitári ◽  
Tamas Felfoldi ◽  
Anna J Szekely ◽  
Attila Szabo

2018 ◽  
Vol 60 (6) ◽  
pp. 583-590 ◽  
Author(s):  
Jinglin Xu ◽  
Jianqing Liu ◽  
Wenbin Gu ◽  
Zhenxiong Wang ◽  
Xin Liu ◽  
...  

Author(s):  
Fedor Gippius ◽  
Fedor Gippius ◽  
Stanislav Myslenkov ◽  
Stanislav Myslenkov ◽  
Elena Stoliarova ◽  
...  

This study is focused on the alterations and typical features of the wind wave climate of the Black Sea’s coastal waters since 1979 till nowadays. Wind wave parameters were calculated by means of the 3rd-generation numerical spectral wind wave model SWAN, which is widely used on various spatial scales – both coastal waters and open seas. Data on wind speed and direction from the NCEP CFSR reanalysis were used as forcing. The computations were performed on an unstructured computational grid with cell size depending on the distance from the shoreline. Modeling results were applied to evaluate the main characteristics of the wind wave in various coastal areas of the sea.


Sign in / Sign up

Export Citation Format

Share Document