Faculty Opinions recommendation of Growth rate and cell size modulate the synthesis of, and requirement for, G1-phase cyclins at start.

Author(s):  
Frederick R Cross
Keyword(s):  
1999 ◽  
Vol 112 (6) ◽  
pp. 939-946 ◽  
Author(s):  
C.R. Carlson ◽  
B. Grallert ◽  
T. Stokke ◽  
E. Boye

Cells of Schizosaccharomyces pombe were grown in minimal medium with different nitrogen sources under steady-state conditions, with doubling times ranging from 2.5 to 14 hours. Flow cytometry and fluorescence microscopy confirmed earlier findings that at rapid growth rates, the G1 phase was short and cell separation occurred at the end of S phase. For some nitrogen sources, the growth rate was greatly decreased, the G1 phase occupied 30–50% of the cell cycle, and cell separation occurred in early G1. In contrast, other nitrogen sources supported low growth rates without any significant increase in G1 duration. The method described allows manipulation of the length of G1 and the relative cell cycle position of S phase in wild-type cells. Cell mass was measured by flow cytometry as scattered light and as protein-associated fluorescence. The extensions of G1 were not related to cell mass at entry into S phase. Our data do not support the hypothesis that the cells must reach a certain fixed, critical mass before entry into S. We suggest that cell mass at the G1/S transition point is variable and determined by a set of molecular parameters. In the present experiments, these parameters were influenced by the different nitrogen sources in a way that was independent of the actual growth rate.


2015 ◽  
Vol 12 (15) ◽  
pp. 4665-4692 ◽  
Author(s):  
G. Aloisi

Abstract. Coccolithophores are sensitive recorders of environmental change. The size of their coccosphere varies in the ocean along gradients of environmental conditions and provides a key for understanding the fate of this important phytoplankton group in the future ocean. But interpreting field changes in coccosphere size in terms of laboratory observations is hard, mainly because the marine signal reflects the response of multiple morphotypes to changes in a combination of environmental variables. In this paper I examine the large corpus of published laboratory experiments with coccolithophores looking for relations between environmental conditions, metabolic rates and cell size (a proxy for coccosphere size). I show that growth, photosynthesis and, to a lesser extent, calcification covary with cell size when pCO2, irradiance, temperature, nitrate, phosphate and iron conditions change. With the exception of phosphate and temperature, a change from limiting to non-limiting conditions always results in an increase in cell size. An increase in phosphate or temperature (below the optimum temperature for growth) produces the opposite effect. The magnitude of the coccosphere-size changes observed in the laboratory is comparable to that observed in the ocean. If the biological reasons behind the environment–metabolism–size link are understood, it will be possible to use coccosphere-size changes in the modern ocean and in marine sediments to investigate the fate of coccolithophores in the future ocean. This reasoning can be extended to the size of coccoliths if, as recent experiments are starting to show, coccolith size reacts to environmental change proportionally to coccosphere size. The coccolithophore database is strongly biased in favour of experiments with the coccolithophore Emiliania huxleyi (E. huxleyi; 82 % of database entries), and more experiments with other species are needed to understand whether these observations can be extended to coccolithophores in general. I introduce a simple model that simulates the growth rate and the size of cells forced by nitrate and phosphate concentrations. By considering a simple rule that allocates the energy flow from nutrient acquisition to cell structure (biomass) and cell maturity (biological complexity, eventually leading to cell division), the model is able to reproduce the covariation of growth rate and cell size observed in laboratory experiments with E. huxleyi when these nutrients become limiting. These results support ongoing efforts to interpret coccosphere and coccolith size measurements in the context of climate change.


2020 ◽  
Vol 65 (12) ◽  
pp. 2896-2911
Author(s):  
Weiying Li ◽  
William G. Sunda ◽  
Wenfang Lin ◽  
Haizheng Hong ◽  
Dalin Shi
Keyword(s):  

2020 ◽  
Vol 30 (12) ◽  
pp. 2238-2247.e5 ◽  
Author(s):  
Niclas Nordholt ◽  
Johan H. van Heerden ◽  
Frank J. Bruggeman

IAWA Journal ◽  
1989 ◽  
Vol 10 (4) ◽  
pp. 417-426 ◽  
Author(s):  
L.G. Vysotskaya ◽  
E.A. Vaganov

Radial cell size of conifers of three speeies: Pinus sylvestris, Larix sibirica, and Larix gmelinii from natural stands in the south of the Krasnoyarsk region (USSR) have been measured with a semi-automated device. The main factors responsible for cell size variation have been determined. These are: age, growth rate, soil moisture, climatic changes and endogenous rhythm of cell growth. Age greatly affects the radial cell size in trees up to 30 years old. Growth rate only affects radial tracheid diameter in narrow rings of 0 to 0.5 mm. The main components of variation: soil moisture, climatic factors and a cyclic component have been estimated for pines from three different conditions of moisture: moist, moderately moist and dry. It was shown, that under optimal growth conditions the contribution of the endogenous component was more or less equal to that of the climatic component.


1973 ◽  
Vol 10 (2) ◽  
pp. 289-298 ◽  
Author(s):  
Aidan Sudbury ◽  
Peter Clifford

A general model for the growth and division of cells in which the growth rate and division probability at any instant depend only on their size at that time is introduced. Conditions under which (a) the distribution of cell-size at division converges ergodically, (b) the sizes tend to 0 or ∞, are exhibited, and bounds to the correlation between the sizes at division of sister cells are given in a wide class of cases.


Sign in / Sign up

Export Citation Format

Share Document