scholarly journals Asymptotics for Bailey-type mock theta functions

Author(s):  
Taylor Garnowski

AbstractWe compute asymptotic estimates for the Fourier coefficients of two mock theta functions, which come from Bailey pairs derived by Lovejoy and Osburn. To do so, we employ the circle method due to Wright and a modified Tauberian theorem. We encounter cancelation in our estimates for one of the mock theta functions due to the auxiliary function $$\theta _{n,p}$$ θ n , p arising from the splitting of Hickerson and Mortenson. We deal with this by using higher-order asymptotic expansions for the Jacobi theta functions.

2017 ◽  
Vol 13 (08) ◽  
pp. 2097-2113 ◽  
Author(s):  
Shubho Banerjee ◽  
Blake Wilkerson

We study the Lambert series [Formula: see text], for all [Formula: see text]. We obtain the complete asymptotic expansion of [Formula: see text] near [Formula: see text]. Our analysis of the Lambert series yields the asymptotic forms for several related [Formula: see text]-series: the [Formula: see text]-gamma and [Formula: see text]-polygamma functions, the [Formula: see text]-Pochhammer symbol and the Jacobi theta functions. Some typical results include [Formula: see text] and [Formula: see text], with relative errors of order [Formula: see text] and [Formula: see text] respectively.


1998 ◽  
Vol 50 (2) ◽  
pp. 412-425 ◽  
Author(s):  
Richard J. McIntosh

AbstractFor the q–series we construct a companion q–series such that the asymptotic expansions of their logarithms as q → 1– differ only in the dominant few terms. The asymptotic expansion of their quotient then has a simple closed form; this gives rise to a new q–hypergeometric identity. We give an asymptotic expansion of a general class of q–series containing some of Ramanujan's mock theta functions and Selberg's identities.


2016 ◽  
Vol 59 (2) ◽  
pp. 323-348 ◽  
Author(s):  
JEREMY LOVEJOY ◽  
ROBERT OSBURN

AbstractWe prove a general result on Bailey pairs and show that two Bailey pairs of Bringmann and Kane are special cases. We also show how to use a change of base formula to pass from the pairs of Bringmann and Kane to pairs used by Andrews in his study of Ramanujan's seventh order mock theta functions. We derive several more Bailey pairs of a similar type and use these to construct a number of new q-hypergeometric double sums which are mock theta functions. Finally, we prove identities between some of these mock theta double sums and classical mock theta functions.


2011 ◽  
Vol 07 (03) ◽  
pp. 825-833 ◽  
Author(s):  
KATHRIN BRINGMANN ◽  
OLAV K. RICHTER

In previous work, we introduced harmonic Maass–Jacobi forms. The space of such forms includes the classical Jacobi forms and certain Maass–Jacobi–Poincaré series, as well as Zwegers' real-analytic Jacobi forms, which play an important role in the study of mock theta functions and related objects. Harmonic Maass–Jacobi forms decompose naturally into holomorphic and non-holomorphic parts. In this paper, we give exact formulas for the Fourier coefficients of the holomorphic parts of harmonic Maass–Jacobi forms and, in particular, we obtain explicit formulas for the Fourier coefficients of weak Jacobi forms.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
E. V. Ferapontov ◽  
M. V. Pavlov ◽  
Lingling Xue

AbstractWe investigate the integrability of Euler–Lagrange equations associated with 2D second-order Lagrangians of the form $$\begin{aligned} \int f(u_{xx},u_{xy},u_{yy})\ \mathrm{d}x\mathrm{d}y. \end{aligned}$$ ∫ f ( u xx , u xy , u yy ) d x d y . By deriving integrability conditions for the Lagrangian density f, examples of integrable Lagrangians expressible via elementary functions, Jacobi theta functions and dilogarithms are constructed. A link of second-order integrable Lagrangians to WDVV equations is established. Generalisations to 3D second-order integrable Lagrangians are also discussed.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Joshua Males ◽  
Andreas Mono ◽  
Larry Rolen

Abstract In the theory of harmonic Maaß forms and mock modular forms, mock theta functions are distinguished examples which arose from q-hypergeometric examples of Ramanujan. Recently, there has been a body of work on higher depth mock modular forms. Here, we introduce distinguished examples of these forms, which we call higher depth mock theta functions, and develop q-hypergeometric expressions for them. We provide three examples of mock theta functions of depth two, each arising by multiplying a classical mock theta function with a certain specialization of a universal mock theta function. In addition, we give their modular completions, and relate each to a q-hypergeometric series.


Sign in / Sign up

Export Citation Format

Share Document