Evolution of the q-entropy and energy dissipation during irreversible processes in nonextensive systems

2006 ◽  
Vol 49 (2) ◽  
pp. 157-165 ◽  
Author(s):  
R. G. Zaripov
Author(s):  
Anahita Imanian ◽  
Mohammad Modarres

Cumulative hazard and cumulative damage are important models for reliability and structural integrity assessment. This article reviews a previously developed thermodynamic entropy–based damage model and derives and demonstrates an equivalent reliability function. As such, a thermodynamically inspired approach to developing new definitions of cumulative hazard, cumulative damage, and life models of structures and components based on the second law of thermodynamics is presented. The article defines a new unified measure of damage in terms of energy dissipation associated with multiple interacting irreversible processes that represent the underlying failure mechanisms that cause damage and failure. Since energy dissipation leads to entropy generation in materials, it has been shown and experimentally demonstrated that the use of the total entropy generated in any degradation process is measurable and can ultimately be used to represent the time of failure of structures and components. This description therefore connects the second law of thermodynamics to the conventional models of reliability used in life assessment. Any variability in the entropic endurance to failure and uncertainties about the parameters of the entropic-based damage model lead to the time-to-failure distribution. In comparison with the conventional probabilistic reliability methods, deriving the reliability function in terms of the entropy generation can offer a general and more fundamental approach to representation of reliability. The entropic-based theory of damage and the equivalent reliability approach are demonstrated and confirmed experimentally by applying the complex interactive corrosion-fatigue degradation mechanism to samples of aluminum materials.


Fluids ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 103 ◽  
Author(s):  
Rajinder Pal

Entropy and entropy generation are abstract and illusive concepts for undergraduate students. In general, students find it difficult to visualize entropy generation in real (irreversible) processes, especially at a mechanistic level. Fluid mechanics laboratory can assist students in making the concepts of entropy and entropy generation more tangible. In flow of real fluids, dissipation of mechanical energy takes place due to friction in fluids. The dissipation of mechanical energy in pipeline flow is reflected in loss of pressure of fluid. The degradation of high quality mechanical energy into low quality frictional heat (internal energy) is simultaneously reflected in the generation of entropy. Thus, experiments involving measurements of pressure gradient as a function of flow rate in pipes offer an opportunity for students to visualize and quantify entropy generation in real processes. In this article, the background in fluid mechanics and thermodynamics relevant to the concepts of mechanical energy dissipation, entropy and entropy generation are reviewed briefly. The link between entropy generation and mechanical energy dissipation in pipe flow experiments is demonstrated both theoretically and experimentally. The rate of entropy generation in pipeline flow of Newtonian fluids is quantified through measurements of pressure gradient as a function of flow rate for a number of test fluids. The factors affecting the rate of entropy generation in pipeline flows are discussed.


Author(s):  
Krisztina Sebők-Nagy ◽  
László Biczók ◽  
Akimitsu Morimoto ◽  
Tetsuya Shimada ◽  
Haruo Inoue

Sign in / Sign up

Export Citation Format

Share Document