The Features of Structure Formation in Chromium-Nickel Steel Manufactured by a Wire-Feed Electron Beam Additive Process

2018 ◽  
Vol 61 (8) ◽  
pp. 1491-1498 ◽  
Author(s):  
A. V. Kolubaev ◽  
S. Yu. Tarasov ◽  
A. V. Filippov ◽  
Yu. A. Denisova ◽  
E. A. Kolubaev ◽  
...  
2020 ◽  
Author(s):  
E. O. Knyazhev ◽  
A. O. Panfilov ◽  
T. A. Kalashnikova ◽  
K. N. Kalashnikov ◽  
A. V. Gusarova ◽  
...  

Vestnik MEI ◽  
2017 ◽  
pp. 8-14 ◽  
Author(s):  
Aleksandr V. Gudenko ◽  
◽  
Viktor К. Dragunov ◽  
Andrey Р. Sliva ◽  
◽  
...  

2021 ◽  
Vol 172 ◽  
pp. 110867
Author(s):  
V. Utyaganova ◽  
A. Filippov ◽  
S. Tarasov ◽  
N. Shamarin ◽  
D. Gurianov ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Andreas Förner ◽  
S. Giese ◽  
C. Arnold ◽  
P. Felfer ◽  
C. Körner ◽  
...  

Abstract Eutectic NiAl-(Cr,Mo) composites are promising high temperature materials due to their high melting point, excellent oxidation behavior and low density. To enhance the strength, hardness and fracture toughness, high cooling rates are beneficial to obtain a fine cellular-lamellar microstructure. This can be provided by the additive process of selective electron beam melting. The very high temperature gradient achieved in this process leads to the formation of the finest microstructure that has ever been reported for NiAl-(Cr,Mo) in-situ composites. A very high hardness and fracture toughening mechanisms were observed. This represents a feasibility study towards additive manufacturing of eutectic NiAl-(Cr,Mo) in-situ composites by selective electron beam melting.


2021 ◽  
Vol 225 ◽  
pp. 01011
Author(s):  
Marina Panchenko ◽  
Eugeny Melnikov ◽  
Valentina Moskvina ◽  
Sergey Astafurov ◽  
Galina Maier ◽  
...  

A comparative study of the mechanical properties, fracture mechanisms and hydrogen embrittlement peculiarities was carried out using the specimens of austenitic CrNi steel produced by two different methods: wire-feed electron beam additive manufacturing and conventional casting followed by solid-solution treatment. Hydrogen-induced reduction of ductility and the increase in the yield strength are observed in steel specimens produced by both methods. Despite hydrogen embrittlement index is comparable in them, the increase in the yield strength after hydrogen-charging is different: 25 MPa for cast steel and 175 MPa for additively manufactured steel. This difference is associated with the peculiarities of phase composition and phase distribution in steels produced by different methods.


Sign in / Sign up

Export Citation Format

Share Document