Recommendation system for technology convergence opportunities based on self-supervised representation learning

2020 ◽  
Author(s):  
Jungpyo Lee ◽  
So Young Sohn
2022 ◽  
Vol 40 (2) ◽  
pp. 1-26
Author(s):  
Chengyuan Zhang ◽  
Yang Wang ◽  
Lei Zhu ◽  
Jiayu Song ◽  
Hongzhi Yin

With the rapid development of online social recommendation system, substantial methods have been proposed. Unlike traditional recommendation system, social recommendation performs by integrating social relationship features, where there are two major challenges, i.e., early summarization and data sparsity. Thus far, they have not been solved effectively. In this article, we propose a novel social recommendation approach, namely Multi-Graph Heterogeneous Interaction Fusion (MG-HIF), to solve these two problems. Our basic idea is to fuse heterogeneous interaction features from multi-graphs, i.e., user–item bipartite graph and social relation network, to improve the vertex representation learning. A meta-path cross-fusion model is proposed to fuse multi-hop heterogeneous interaction features via discrete cross-correlations. Based on that, a social relation GAN is developed to explore latent friendships of each user. We further fuse representations from two graphs by a novel multi-graph information fusion strategy with attention mechanism. To the best of our knowledge, this is the first work to combine meta-path with social relation representation. To evaluate the performance of MG-HIF, we compare MG-HIF with seven states of the art over four benchmark datasets. The experimental results show that MG-HIF achieves better performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Gongwen Xu ◽  
Guangyu Jia ◽  
Lin Shi ◽  
Zhijun Zhang

Personalized courses recommendation technology is one of the hotspots in online education field. A good recommendation algorithm can stimulate learners’ enthusiasm and give full play to different learners’ learning personality. At present, the popular collaborative filtering algorithm ignores the semantic relationship between recommendation items, resulting in unsatisfactory recommendation results. In this paper, an algorithm combining knowledge graph and collaborative filtering is proposed. Firstly, the knowledge graph representation learning method is used to embed the semantic information of the items into a low-dimensional semantic space; then, the semantic similarity between the recommended items is calculated, and then, this item semantic information is fused into the collaborative filtering recommendation algorithm. This algorithm increases the performance of recommendation at the semantic level. The results show that the proposed algorithm can effectively recommend courses for learners and has higher values on precision, recall, and F1 than the traditional recommendation algorithm.


Author(s):  
Htay Htay Win ◽  
Aye Thida Myint ◽  
Mi Cho Cho

For years, achievements and discoveries made by researcher are made aware through research papers published in appropriate journals or conferences. Many a time, established s researcher and mainly new user are caught up in the predicament of choosing an appropriate conference to get their work all the time. Every scienti?c conference and journal is inclined towards a particular ?eld of research and there is a extensive group of them for any particular ?eld. Choosing an appropriate venue is needed as it helps in reaching out to the right listener and also to further one’s chance of getting their paper published. In this work, we address the problem of recommending appropriate conferences to the authors to increase their chances of receipt. We present three di?erent approaches for the same involving the use of social network of the authors and the content of the paper in the settings of dimensionality reduction and topic modelling. In all these approaches, we apply Correspondence Analysis (CA) to obtain appropriate relationships between the entities in question, such as conferences and papers. Our models show hopeful results when compared with existing methods such as content-based ?ltering, collaborative ?ltering and hybrid ?ltering.


2010 ◽  
Vol 130 (2) ◽  
pp. 317-323
Author(s):  
Masakazu Takahashi ◽  
Takashi Yamada ◽  
Kazuhiko Tsuda ◽  
Takao Terano

2020 ◽  
Vol 16 (7) ◽  
pp. 1095
Author(s):  
Gao Yuan ◽  
Zhang Youchun ◽  
Lu Wenpen ◽  
Luo Jie ◽  
Hao Daqing

Sign in / Sign up

Export Citation Format

Share Document