item representation
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 13)

H-INDEX

4
(FIVE YEARS 3)

Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 263
Author(s):  
Shuli Wang ◽  
Xuewen Li ◽  
Xiaomeng Kou ◽  
Jin Zhang ◽  
Shaojie Zheng ◽  
...  

Predicting users’ next behavior through learning users’ preferences according to the users’ historical behaviors is known as sequential recommendation. In this task, learning sequence representation by modeling the pairwise relationship between items in the sequence to capture their long-range dependencies is crucial. In this paper, we propose a novel deep neural network named graph convolutional network transformer recommender (GCNTRec). GCNTRec is capable of learning effective item representation in a user’s historical behaviors sequence, which involves extracting the correlation between the target node and multi-layer neighbor nodes on the graphs constructed under the heterogeneous information networks in an end-to-end fashion through a graph convolutional network (GCN) with degree encoding, while the capturing long-range dependencies of items in a sequence through the transformer encoder model. Using this multi-dimensional vector representation, items related to the a user historical behavior sequence can be easily predicted. We empirically evaluated GCNTRec on multiple public datasets. The experimental results show that our approach can effectively predict subsequent relevant items and outperforms previous techniques.


Author(s):  
Gaode Chen ◽  
Xinghua Zhang ◽  
Yanyan Zhao ◽  
Cong Xue ◽  
Ji Xiang

Sequential recommendation systems alleviate the problem of information overload, and have attracted increasing attention in the literature. Most prior works usually obtain an overall representation based on the user’s behavior sequence, which can not sufficiently reflect the multiple interests of the user. To this end, we propose a novel method called PIMI to mitigate this issue. PIMI can model the user’s multi-interest representation effectively by considering both the periodicity and interactivity in the item sequence. Specifically, we design a periodicity-aware module to utilize the time interval information between user’s behaviors. Meanwhile, an ingenious graph is proposed to enhance the interactivity between items in user’s behavior sequence, which can capture both global and local item features. Finally, a multi-interest extraction module is applied to describe user’s multiple interests based on the obtained item representation. Extensive experiments on two real-world datasets Amazon and Taobao show that PIMI outperforms state-of-the-art methods consistently.


2021 ◽  
Vol 12 (2) ◽  
pp. 1-20
Author(s):  
Zeyu Cui ◽  
Feng Yu ◽  
Shu Wu ◽  
Qiang Liu ◽  
Liang Wang

Item representations in recommendation systems are expected to reveal the properties of items. Collaborative recommender methods usually represent an item as one single latent vector. Nowadays the e-commercial platforms provide various kinds of attribute information for items (e.g., category, price, and style of clothing). Utilizing this attribute information for better item representations is popular in recent years. Some studies use the given attribute information as side information, which is concatenated with the item latent vector to augment representations. However, the mixed item representations fail to fully exploit the rich attribute information or provide explanation in recommender systems. To this end, we propose a fine-grained Disentangled Item Representation (DIR) for recommender systems in this article, where the items are represented as several separated attribute vectors instead of a single latent vector. In this way, the items are represented at the attribute level, which can provide fine-grained information of items in recommendation. We introduce a learning strategy, LearnDIR, which can allocate the corresponding attribute vectors to items. We show how DIR can be applied to two typical models, Matrix Factorization (MF) and Recurrent Neural Network (RNN). Experimental results on two real-world datasets show that the models developed under the framework of DIR are effective and efficient. Even using fewer parameters, the proposed model can outperform the state-of-the-art methods, especially in the cold-start situation. In addition, we make visualizations to show that our proposition can provide explanation for users in real-world applications.


Author(s):  
Anjing Luo ◽  
Pengpeng Zhao ◽  
Yanchi Liu ◽  
Fuzhen Zhuang ◽  
Deqing Wang ◽  
...  

Session-based recommendation becomes a research hotspot for its ability to make recommendations for anonymous users. However, existing session-based methods have the following limitations: (1) They either lack the capability to learn complex dependencies or focus mostly on the current session without explicitly considering collaborative information. (2) They assume that the representation of an item is static and fixed for all users at each time step. We argue that even the same item can be represented differently for different users at the same time step. To this end, we propose a novel solution, Collaborative Self-Attention Network (CoSAN) for session-based recommendation, to learn the session representation and predict the intent of the current session by investigating neighborhood sessions. Specially, we first devise a collaborative item representation by aggregating the embedding of neighborhood sessions retrieved according to each item in the current session. Then, we apply self-attention to learn long-range dependencies between collaborative items and generate collaborative session representation. Finally, each session is represented by concatenating the collaborative session representation and the embedding of the current session. Extensive experiments on two real-world datasets show that CoSAN constantly outperforms state-of-the-art methods.


Author(s):  
Ting-Hsiang Wang ◽  
Hsiu-Wei Yang ◽  
Chih-Ming Chen ◽  
Ming-Feng Tsai ◽  
Chuan-Ju Wang

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 75094-75104
Author(s):  
Tan Nghia Duong ◽  
Tuan Anh Vuong ◽  
Duc Minh Nguyen ◽  
Quang Hieu Dang

2019 ◽  
Vol 4 (3) ◽  
pp. 240-253 ◽  
Author(s):  
Jingwei Ma ◽  
Jiahui Wen ◽  
Mingyang Zhong ◽  
Weitong Chen ◽  
Xue Li

Author(s):  
Guibing Guo ◽  
Shichang Ouyang ◽  
Xiaodong He ◽  
Fajie Yuan ◽  
Xiaohua Liu

Sequential recommendation systems have become a research hotpot recently to suggest users with the next item of interest (to interact with). However, existing approaches suffer from two limitations: (1) The representation of an item is relatively static and fixed for all users. We argue that even a same item should be represented distinctively with respect to different users and time steps. (2) The generation of a prediction for a user over an item is computed in a single scale (e.g., by their inner product), ignoring the nature of multi-scale user preferences. To resolve these issues, in this paper we propose two enhancing building blocks for sequential recommendation. Specifically, we devise a Dynamic Item Block (DIB) to learn dynamic item representation by aggregating the embeddings of those who rated the same item before that time step. Then, we come up with a Prediction Enhancing Block (PEB) to project user representation into multiple scales, based on which many predictions can be made and attentively aggregated for enhanced learning. Each prediction is generated by a softmax over a sampled itemset rather than the whole item space for efficiency. We conduct a series of experiments on four real datasets, and show that even a basic model can be greatly enhanced with the involvement of DIB and PEB in terms of ranking accuracy. The code and datasets can be obtained from https://github.com/ouououououou/DIB-PEB-Sequential-RS


Sign in / Sign up

Export Citation Format

Share Document