Effect of a pile driven in a predrilled hole on the stress-strain state of plastically frozen soil

2007 ◽  
Vol 44 (4) ◽  
pp. 146-150 ◽  
Author(s):  
V. I. Aksenov ◽  
S. G. Gevorkin
2019 ◽  
Vol 97 ◽  
pp. 04056
Author(s):  
Mikhail Rabinovich

Article presents problem statement and solution for joint calculation of temperature regime and stress-strain state of permafrost soils under building footing, with consideration of thermal impact from on-surface and buried high-temperature utilities. Based on a series of optimization tasks, a design model for stress-strain state has been developed, solutions of test problems have been obtained and analyzed to determine the degree of influence of temperature stresses and relation of the deformation characteristics of frozen soil in the negative temperature spectrum on the stress distribution and settlement values of frozen soil base under the building.


2020 ◽  
Vol 17 (5) ◽  
pp. 96-113
Author(s):  
A. I. Marasanov ◽  
A. A. Sheikin ◽  
I. V. Sheikin

The frozen soils’ stress-strain state varies with time due to the internal soil rheological processes. Those processes become active within the thawing period of the active soil layer causing increase in settlement of the engineering structures’ foundations. Hence, creep processes and thawing of frozen soils should be considered when designing the transportation facilities for regions of the Far North and Siberia.The objective of the research is to develop a procedure for evaluating the variation in time of the stress-strain state of the frozen soil under the post footing of a bridge pier’s foundation considering the frozen soil creep and thawing. The interaction of the bridge pier post foundations and frozen silt-loam soil is modelled and studied. The research is based on the example of an existing overpass over the M‑56 Lena motor road situated at Amga–Samyrdah stage of Tommot–Yakutsk section of the Berkakit–Tommot–Yakutsk railway line. This overpass has piers with post foundations. The above railway line is in the area of hard frozen soils.The study focuses on changes in principal normal compressive stresses with the course of time, as well as on the frozen soil movements under the post footing. The time allotted for the above system behavior study is limited to five months. There are two design cases: a) considering the frozen soil thawing up to a depth range of 1,5 to 4 m; b) without considering the frozen soil thawing.The research has shown that the thawing of the frozen soil up to a comparatively low depth as compared to natural level results in a significant increase (by 2÷2,5 times) in the values of post foundation settlement as compared with the design case without thawing. At the same time, it was found that small values of thawing have a subtle effect on the frozen soil’s stress state under the post footing. Besides, all reviewed design cases (with / without thawing revealed that stress of the frozen soil under the post footing decreases with time (stress relaxation).


Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


Sign in / Sign up

Export Citation Format

Share Document