scholarly journals Multiscale stick-breaking mixture models

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Marco Stefanucci ◽  
Antonio Canale

AbstractBayesian nonparametric density estimation is dominated by single-scale methods, typically exploiting mixture model specifications, exception made for Pólya trees prior and allied approaches. In this paper we focus on developing a novel family of multiscale stick-breaking mixture models that inherits some of the advantages of both single-scale nonparametric mixtures and Pólya trees. Our proposal is based on a mixture specification exploiting an infinitely deep binary tree of random weights that grows according to a multiscale generalization of a large class of stick-breaking processes; this multiscale stick-breaking is paired with specific stochastic processes generating sequences of parameters that induce stochastically ordered kernel functions. Properties of this family of multiscale stick-breaking mixtures are described. Focusing on a Gaussian specification, a Markov Chain Monte Carlo algorithm for posterior computation is introduced. The performance of the method is illustrated analyzing both synthetic and real datasets consistently showing competitive results both in scenarios favoring single-scale and multiscale methods. The results suggest that the method is well suited to estimate densities with varying degree of smoothness and local features.

2014 ◽  
Vol 62 (10) ◽  
pp. 1440-1452 ◽  
Author(s):  
Nicola Greggio ◽  
Alexandre Bernardino ◽  
Paolo Dario ◽  
José Santos-Victor

2020 ◽  
Vol 25 (4) ◽  
pp. 622-641
Author(s):  
Jurgita Arnastauskaitė ◽  
Tomas Ruzgas

Flexible and reliable probability density estimation is fundamental in unsupervised learning and classification. Finite Gaussian mixture models are commonly used for this purpose. However, the parametric form of the distribution is not always known. In this case, non-parametric density estimation methods are used. Usually, these methods become computationally demanding as the number of components increases. In this paper, a comparative study of accuracy of some nonparametric density estimators is made by means of simulation. The following approaches have been considered: an adaptive bandwidth kernel estimator, a projection pursuit estimator, a logspline estimator, and a k-nearest neighbor estimator. It was concluded that data clustering as a pre-processing step improves the estimation of mixture densities. However, in case data does not have clearly defined clusters, the pre-preprocessing step does not give that much of advantage. The application of density estimators is illustrated using municipal solid waste data collected in Kaunas (Lithuania). The data distribution is similar (i.e., with kurtotic unimodal density) to the benchmark distribution introduced by Marron and Wand. Based on the homogeneity tests it can be concluded that distributions of the municipal solid waste fractions in Kutaisi (Georgia), Saint-Petersburg (Russia), and Boryspil (Ukraine) are statistically indifferent compared to the distribution of waste fractions in Kaunas. The distribution of waste data collected in Kaunas (Lithuania) follows the general observations introduced by Marron and Wand (i.e., has one mode and certain kurtosis).


Author(s):  
M. Vassaux ◽  
R. A. Richardson ◽  
P. V. Coveney

Mechanisms emerging across multiple scales are ubiquitous in physics and methods designed to investigate them are becoming essential. The heterogeneous multiscale method (HMM) is one of these, concurrently simulating the different scales while keeping them separate. Owing to the significant computational expense, developments of HMM remain mostly theoretical and applications to physical problems are scarce. However, HMM is highly scalable and is well suited for high performance computing. With the wide availability of multi-petaflop infrastructures, HMM applications are becoming practical. Rare applications to mechanics of materials at low loading amplitudes exist, but are generally confined to the elastic regime. Beyond that, where history-dependent, irreversible or nonlinear mechanisms occur, not only computational cost but also data management issues arise. The micro-scale description loses generality, developing a specific microstructure based on the deformation history, which implies inter alia that as many microscopic models as discrete locations in the macroscopic description must be simulated and stored. Here, we present a detailed description of the application of HMM to inelastic mechanics of materials, with emphasis on the efficiency and accuracy of the scale-bridging methodology. The method is well suited to the estimation of macroscopic properties of polymers (and derived nanocomposites) starting from knowledge of their atomistic chemical structure. Through application of the resulting workflow to polymer fracture mechanics, we demonstrate deviation in the predicted fracture toughness relative to a single-scale molecular dynamics approach, thus illustrating the need for such concurrent multiscale methods in the predictive estimation of macroscopic properties. This article is part of the theme issue ‘Multiscale modelling, simulation and computing: from the desktop to the exascale’.


2007 ◽  
Author(s):  
Danielle L. Cisler ◽  
Gitta H. Lubke
Keyword(s):  

2013 ◽  
Author(s):  
Stephanie S. Spielmann ◽  
Geoff MacDonald ◽  
Jessica A. Maxwell ◽  
Samantha Joel ◽  
Diana Peragine ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document