Computational design of novel flavonoid analogues as potential AChE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations

2014 ◽  
Vol 26 (2) ◽  
pp. 467-476 ◽  
Author(s):  
Chakshu Vats ◽  
Jaspreet Kaur Dhanjal ◽  
Sukriti Goyal ◽  
Navneeta Bharadvaja ◽  
Abhinav Grover
2020 ◽  
Author(s):  
Md. Chayan Ali ◽  
Yeasmin Akter Munni ◽  
Raju Das ◽  
Marium sultana ◽  
Nasrin Akter ◽  
...  

AbstractCurcuma amada or Mango ginger, a member of the Zingiberaceae family, has been revealed as a beneficiary medicinal plant having diverse pharmacological activities against a wide range of diseases. Due to having neuromodulation properties of this plant, the present study characterized the secondary metabolites of Curcuma amada for their drug-likeness properties, identified potent hits by targeting Acetylcholinesterase (AChE) and revealed neuromodulatory potentiality by network pharmacology approaches. Here in silico ADMET analysis was performed for chemical profiling, and molecular docking and molecular dynamics simulations were used to hit selection and binding characterizations. Accordingly, ADMET prediction showed that around 87.59% of compounds processed drug-likeness activity, where four compounds have been screened out by molecular docking. Guided from induced-fit docking, molecular dynamics simulations revealed phytosterol and curcumin derivatives as the most favorable AChE inhibitors with the highest binding energy, as resulted from MM-PBSA analysis. Furthermore, all of the four hits were appeared to modulate several signaling molecules and intrinsic cellular pathways in network pharmacology analysis, which are associated with neuronal growth survival, inflammation, and immune response, supporting their capacity to revert the condition of neuro-pathobiology. Together, the present in silico based characterization and system pharmacology based findings demonstrate Curcuma amada, as a great source of neuromodulating compounds, which brings about new development for complementary and alternative medicine for the prevention and treatment of neurodegenerative disorders.


2020 ◽  
Vol 16 (7) ◽  
pp. 903-927 ◽  
Author(s):  
Rahman Abdizadeh ◽  
Farzin Hadizadeh ◽  
Tooba Abdizadeh

Background: Acetylcholinesterase (AChE), a serine hydrolase, is an important drug target in the treatment of Alzheimer's disease (AD). Thus, novel AChE inhibitors were designed and developed as potential drug candidates, for significant therapy of AD. Objective: In this work, molecular modeling studies, including CoMFA, CoMFA-RF, CoMSIA, HQSAR and molecular docking and molecular dynamics simulations were performed on a series of AChE inhibitors to get more potent anti-Alzheimer drugs. Methods: 2D/3D-QSAR models including CoMFA, CoMFA-RF, CoMSIA, and HQSAR methods were carried out on 40 pyrimidinylthiourea derivatives as data set by the Sybylx1.2 program. Molecular docking and molecular dynamics simulations were performed using the MOE software and the Sybyl program, respectively. Partial least squares (PLS) model as descriptors was used for QSAR model generation. Results: The CoMFA (q2, 0.629; r2ncv, 0.901; r2pred, 0.773), CoMFA-RF (q2, 0.775; r2ncv, 0.910; r2pred, 0.824), CoMSIA (q2, 0.754; r2ncv, 0.919; r2pred, 0.874) and HQSAR models (q2, 0.823; r2ncv, 0.976; r2pred, 0.854) for training and test set yielded significant statistical results. Conclusion: These QSAR models were excellent, robust and had good predictive capability. Contour maps obtained from the QSAR models were validated by molecular dynamics simulationassisted molecular docking study. The resulted QSAR models could be useful for the rational design of novel potent AChE inhibitors in Alzheimer's treatment.


Author(s):  
Mahendera Kumar Meena ◽  
Durgesh Kumar ◽  
Kamlesh Kumari ◽  
Nagendra Kumar Kaushik ◽  
Rammapa Venkatesh Kumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document