ache inhibitors
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 104)

H-INDEX

26
(FIVE YEARS 7)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 168
Author(s):  
Yijing Liao ◽  
Xing Hu ◽  
Junhui Pan ◽  
Guowen Zhang

Alzheimer’s disease (AD) is the most prevalent chronic neurodegenerative disease in elderly individuals, causing dementia. Acetylcholinesterase (AChE) is regarded as one of the most popular drug targets for AD. Herbal secondary metabolites are frequently cited as a major source of AChE inhibitors. In the current study, baicalein, a typical bioactive flavonoid, was found to inhibit AChE competitively, with an associated IC50 value of 6.42 ± 0.07 µM, through a monophasic kinetic process. The AChE fluorescence quenching by baicalein was a static process. The binding constant between baicalein and AChE was an order of magnitude of 104 L mol−1, and hydrogen bonding and hydrophobic interaction were the major forces for forming the baicalein−AChE complex. Circular dichroism analysis revealed that baicalein caused the AChE structure to shrink and increased its surface hydrophobicity by increasing the α-helix and β-turn contents and decreasing the β-sheet and random coil structure content. Molecular docking revealed that baicalein predominated at the active site of AChE, likely tightening the gorge entrance and preventing the substrate from entering and binding with the enzyme, resulting in AChE inhibition. The preceding findings were confirmed by molecular dynamics simulation. The current study provides an insight into the molecular-level mechanism of baicalein interaction with AChE, which may offer new ideas for the research and development of anti-AD functional foods and drugs.


2021 ◽  
pp. 1-10
Author(s):  
Fangcheng Fan ◽  
Hua Liu ◽  
Xiaojie Shi ◽  
Yangwen Ai ◽  
Qingshan Liu ◽  
...  

Background: Evidence summaries for efficacy and safety of frequently employed treatments of Alzheimer’s disease (AD) are sparse. Objective: We aimed to perform an updated umbrella review to identify an efficacious and safe treatment for AD patients. Methods: We conducted a search for meta-analyses and systematic reviews on the Embase, PubMed, The Cochrane Library, and Web of Science to address this knowledge gap. We examined the cognitive functions, behavioral symptoms, global clinical assessment, and Activities of Daily Living as efficacy endpoints, and the incidence of adverse events as safety profiles. Results: Sixteen eligible papers including 149 studies were included in the umbrella review. The results showed that AChE inhibitors (donepezil, galantamine, rivastigmine, Huperzine A), Ginkgo biloba, and cerebrolysin appear to be beneficial for cognitive, global performances, and activities of daily living in patients with AD. Furthermore, anti-Aβ agents are unlikely to have an important effect on slowing cognitive or functional impairment in mild to moderate AD. Conclusion: Our study demonstrated that AChE inhibitors, Ginkgo biloba, and cerebrolysin are the optimum cognitive and activities of daily living medication for patients with AD.


2021 ◽  
Vol 18 ◽  
Author(s):  
Donald E. Moss ◽  
Ruth G. Perez

: Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is increasingly viewed as a complex multi-dimensional disease without effective treatments. Recent randomized, placebo-controlled studies have shown volume losses of ~0.7% and ~3.5% per year, respectively, in the basal cholinergic forebrain (CBF) and hippocampus in untreated suspected prodromal AD. One year of donepezil treatment reduced these annualized rates of atrophy to about half of untreated rates. Similar positive although variable results have also been found in volumetric measurements of the cortex and whole brain in patients with mild cognitive impairment as well as more advanced AD stages after treatments with all three currently available acetylcholinesterase (AChE) inhibitors (donepezil, rivastigmine, and galantamine). Here we review the anti-neurodegenerative benefits of AChE inhibitors and the expected parallel disease-accelerating impairments caused by anticholinergics, within a framework of the cholinergic hypothesis of AD and AD-associated loss of nerve growth factor (NGF). Consistent with the “loss of trophic factor hypothesis of AD,” we propose that AChE inhibitors enhance acetylcholine-dependent release and uptake of NGF, thereby sustaining cholinergic neuronal viability and thus lowing AD-associated degeneration of the CBF, to delay dementia progression ultimately. We propose that improved cholinergic therapies for AD started early in asymptomatic persons, especially those with risk factors, will delay the onset, progression, or emergence of dementia. The currently available competitive pseudo-irreversible AChE inhibitors are not CNS-selective and thus induce gastrointestinal toxicity that limits cortical AChE inhibition to ~30% (ranges from 19% to 41%) as measured by in vivo PET studies in patients undergoing therapy. These levels of inhibition are marginal about what is required for effective symptomatic treatment of dementia or slowing AD-associated neurodegeneration. In contrast, because of the inherently slow de novo synthesis of AChE in the CNS (about one-tenth the rate of synthesis in peripheral tissues), irreversible AChE inhibitors produce significantly higher levels of inhibition in the CNS than in peripheral tissues. Such an irreversible inhibitor produces ~68% CNS AChE inhibition in patients undergoing therapy and ~80% inhibition in cortical biopsies of non-human primates. The full therapeutic benefits of AChE inhibitors, whether for symptomatic treatment of dementia or disease-slowing, thus would benefit by producing high levels of CNS inhibition. One way to obtain such higher levels of CNS AChE inhibition would be by using irreversible inhibitors.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1557
Author(s):  
Zoran Radić

The influence of ligand binding to human, mouse and Torpedo californica acetylcholinesterase (EC 3.1.1.7; AChE) backbone structures is analyzed in a pairwise fashion by comparison with X-ray structures of unliganded AChEs. Both complexes with reversible ligands (substrates and inhibitors) as well as covalently interacting ligands leading to the formation of covalent AChE conjugates of tetrahedral and of trigonal-planar geometries are considered. The acyl pocket loop (AP loop) in the AChE backbone is recognized as the conformationally most adaptive, but not necessarily sterically exclusive, structural element. Conformational changes of the centrally located AP loop coincide with shifts in C-terminal α-helical positions, revealing interacting components for a potential allosteric interaction within the AChE backbone. The stabilizing power of the aromatic choline binding site, with the potential to attract and pull fitting entities covalently tethered to the active Ser, is recognized. Consequently, the pull can promote catalytic reactions or relieve steric pressure within the impacted space of the AChE active center gorge. These dynamic properties of the AChE backbone inferred from the analysis of static X-ray structures contribute towards a better understanding of the molecular template important in the structure-based design of therapeutically active molecules, including AChE inhibitors as well as reactivators of conjugated, inactive AChE.


2021 ◽  
Vol 25 (12) ◽  
pp. 82-87
Author(s):  
C. Phromchaloem ◽  
L. Muensritharam

In general, the laboratory method of analyzing pesticides in vegetables is complicated due to the high cost of equipment and chemicals. The process of analyzing pesticide residues generally requires expertise as well as a significant period of time. In this study, a paper-based biosensor was developed for the detection of acetylcholinesterase (AChE) inhibitors, particularly organophosphate pesticides. The paperbased biosensor was constructed based on the Ellman colorimetric assay by immobilizing AChE on cellulose paper with 2% alginate gel, 0.25% glutaraldehyde and the colorimetric reagent 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) in phosphate buffer (pH 8.0). As a substrate, acetylthiocholine chloride (ATChCl) was used. The results showed that the developed paperbased biosensor has been stable for 2 weeks with a detection limit of 0.03 mM of chlorpyrifos. The paper-based biosensor was applied to detect organophosphate pesticides in vegetables from the farmers’ market, Ratchaburi Province. It was found that the test results of the paper-based biosensor were similar to the commercial GT-test kit. The paper-based biosensor was 10 times faster than the GT-test kit in terms of testing time and the results were easy to identify due to the color-based indicator. As a result, a paper-based biosensor is rapid, portable and easy to use by the general population.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 459
Author(s):  
Neda Rafat ◽  
Paul Satoh ◽  
Robert Mark Worden

A novel, integrated experimental and modeling framework was applied to an inhibition-based bi-enzyme (IBE) electrochemical biosensor to detect acetylcholinesterase (AChE) inhibitors that may trigger neurological diseases. The biosensor was fabricated by co-immobilizing AChE and tyrosinase (Tyr) on the gold working electrode of a screen-printed electrode (SPE) array. The reaction chemistry included a redox-recycle amplification mechanism to improve the biosensor’s current output and sensitivity. A mechanistic mathematical model of the biosensor was used to simulate key diffusion and reaction steps, including diffusion of AChE’s reactant (phenylacetate) and inhibitor, the reaction kinetics of the two enzymes, and electrochemical reaction kinetics at the SPE’s working electrode. The model was validated by showing that it could reproduce a steady-state biosensor current as a function of the inhibitor (PMSF) concentration and unsteady-state dynamics of the biosensor current following the addition of a reactant (phenylacetate) and inhibitor phenylmethylsulfonylfluoride). The model’s utility for characterizing and optimizing biosensor performance was then demonstrated. It was used to calculate the sensitivity of the biosensor’s current output and the redox-recycle amplification factor as a function of experimental variables. It was used to calculate dimensionless Damkohler numbers and current-control coefficients that indicated the degree to which individual diffusion and reaction steps limited the biosensor’s output current. Finally, the model’s utility in designing IBE biosensors and operating conditions that achieve specific performance criteria was discussed.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6379
Author(s):  
Aleksandra Dymek ◽  
Jarosław Widelski ◽  
Krzysztof Kamil Wojtanowski ◽  
Vladyslav Vivcharenko ◽  
Agata Przekora ◽  
...  

In view of the abundant evidence that Lycopodiaceae alkaloids, including the well-known huperzine A (HupA), are among the potent acetylcholinesterase (AChE) inhibitors, an attempt was made to search for new compounds responsible for this property. For this purpose, three plant species belonging to the Lycopodiaceae family, commonly found in the Euro-Asia region, were subjected to the isolation of bioactive compounds, their identification and subsequent evaluation of their anticholinesterase and cytotoxic activities. Methanolic extracts of two Lycopodium and one Hupezia species were obtained via optimized pressurized liquid extraction (PLE) and then pre-purified using innovative gradient vacuum liquid chromatography (gVLC). For the first time, three sorbents of different porosity packed in polypropylene cartridges and mobile phase systems of different polarity were used to elute the target compounds. This technique proved to be a rapid tool for the obtainment of alkaloid fractions and allowed one to select the appropriate process conditions to yield potent AChE inhibitors in each of the species studied. More than 100 collected fractions were analyzed via HPLC/ESI-QTOF-MS, which enabled one to detect more than 50 compounds, including several new ones previously unreported. Some of them were present in high purity fractions (60–90% of the established purity). TLC bioautography assays proved that the analyzed species are rich sources of AChE inhibitors, but H. selago showed the highest anti-AChE activity. Additionally, the modified silanized silica gel sorbent used allowed one to isolate L. clavatum alkaloids more efficiently using an aqueous reversed-phase solvent system. Furthermore, the tested extracts from the three plant extracts were found to be safe, as they did not exhibit cytotoxicity to skin fibroblasts.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2102
Author(s):  
Karyna Calvopiña ◽  
Omar Malagón ◽  
Francesca Capetti ◽  
Barbara Sgorbini ◽  
Verónica Verdugo ◽  
...  

As part of a project devoted to the phytochemical study of Ecuadorian biodiversity, new essential oils are systematically distilled and analysed. In the present work, Jungia rugosa Less (Asteraceae) has been selected and some wild specimens collected to investigate the volatile fraction. The essential oil, obtained from fresh leaves, was analysed for the first time in the present study. The chemical composition was determined by gas chromatography, coupled to mass spectrometry (GC-MS) for qualitative analysis, and to flame ionization detector (GC-FID) for quantitation. The calculation of relative response factors (RRF), based on combustion enthalpy, was carried out for each quantified component. Fifty-six compounds were identified and quantified in a 5% phenyl-polydimethylsiloxane non-polar column and 53 compounds in a polyethylene glycol polar column, including four undetermined compounds. The main feature of this essential oil was the exclusive sesquiterpenes content, both hydrocarbons (74.7% and 80.4%) and oxygenated (8.3% and 9.6%). Major constituents were: γ-curcumene (47.1% and 49.7%) and β-sesquiphellandrene (17.0% and 17.9%), together with two abundant undetermined oxygenated sesquiterpenes, whose abundance was 6.7–7.2% and 4.7–3.3%, respectively. In addition, the essential oil was submitted to enantioselective evaluation in two β-cyclodextrin-based enantioselective columns, determining the enantiomeric purity of a minor component (1S,2R,6R,7R,8R)-(+)-α-copaene. Finally, the AChE inhibition activity of the EO was evaluated in vitro. In conclusion, this volatile fraction is suitable for further investigation, according to two main lines: (a) the purification and structure elucidation of the major undetermined compounds, (b) a bio-guided fractionation, intended to investigate the presence of new sesquiterpene AChE inhibitors among the minor components.


Sign in / Sign up

Export Citation Format

Share Document