scholarly journals Simple method of selecting totalistic rules for pseudorandom number generator based on nonuniform cellular automaton

Author(s):  
Miroslaw Szaban

AbstractThis paper is devoted to selecting rules for one-dimensional (1D) totalistic cellular automaton (TCA). These rules are used for the generation of pseudorandom sequences, which could be useful in cryptography. The power of pseudorandom number generator (PRNG) based on nonuniform TCA can be improved using not only one rule but a large set of rules. For this purpose, each subset of rules should be analyzed with its assignation to cellular automaton (CA) cells should be analyzed. We examine each of the subsets of totalistic rules, consisting of rules with neighborhood radius equal to 1 and 2. The entropy of bitstreams generated by the nonuniform TCA points out the best set of rules appropriate for the TCA-based generator. The paper also presents the method of simple selection of CA rules based on a cryptographic criterion known as a balance. The proposed method selects a maximal size of the set of available CA rules for a given neighborhood radius and suitable for PRNG. The method guarantees to avoid conflicting assignments of rules resulting in the creation of unwanted stable bit sequences, and provides high-quality pseudorandom sequences. This technique is used to verify the subsets of rules selected experimentally. Verified rules are proposed for 1D TCA-based PRNG as a new subset of best nonuniform TCA rules. New picked, examined, and verified subset of rules could be used in TCA-based PRNG and provide cryptographically strong bit sequences and huge keyspace.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hongyan Zang ◽  
Yue Yuan ◽  
Xinyuan Wei

This paper proposes three types of one-dimensional piecewise chaotic maps and two types of symmetrical piecewise chaotic maps and presents five theorems. Furthermore, some examples that satisfy the theorems are constructed, and an analysis and model of the dynamic properties are discussed. The construction methods proposed in this paper have a certain generality and provide a theoretical basis for constructing a new discrete chaotic system. In addition, this paper designs a pseudorandom number generator based on piecewise chaotic map and studies its application in cryptography. Performance evaluation shows that the generator can generate high quality random sequences efficiently.


VLSI Design ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Kaiyu Wang ◽  
Qingxin Yan ◽  
Shihua Yu ◽  
Xianwei Qi ◽  
Yudi Zhou ◽  
...  

This paper presents a new multioutput and high throughput pseudorandom number generator. The scheme is to make the homogenized Logistic chaotic sequence as unified hyperchaotic system parameter. So the unified hyperchaos can transfer in different chaotic systems and the output can be more complex with the changing of homogenized Logistic chaotic output. Through processing the unified hyperchaotic 4-way outputs, the output will be extended to 26 channels. In addition, the generated pseudorandom sequences have all passed NIST SP800-22 standard test and DIEHARD test. The system is designed in Verilog HDL and experimentally verified on a Xilinx Spartan 6 FPGA for a maximum throughput of 16.91 Gbits/s for the native chaotic output and 13.49 Gbits/s for the resulting pseudorandom number generators.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
John Prakash Arockiasamy ◽  
Lydia Elizabeth Benjamin ◽  
Rhymend Uthariaraj Vaidyanathan

The design of cryptographically secure pseudorandom number generator (CSPRNG) producing unpredictable pseudorandom sequences robustly and credibly has been a nontrivial task. Almost all the chaos-based CSPRNG design approaches invariably depend only on statistical analysis. Such schemes designed to be secure are being proven to be predictable and insecure day by day. This paper proposes a design and instantiation approach to chaos-based CSPRNG using proven generic constructions of modern cryptography. The proposed design approach with proper instantiation of such generic constructions eventually results in providing best of both worlds that is the provable security guarantees of modern cryptography and passing of necessary statistical tests as that of chaos-based schemes. Also, we introduce a new coupled map lattice based on logistic-sine map for the construction of CSPRNG. The proposed pseudorandom number generator is proven using rigorous security analysis as that of modern cryptography and tested using the standard statistical testing suites. It is observed that the generated sequences pass all stringent statistical tests such as NIST, Dieharder, ENT, and TestU01 randomness test suites.


2021 ◽  
Vol 190 ◽  
pp. 370-376
Author(s):  
Mikhail Ivanov ◽  
Iliya Chugunkov ◽  
Bogdana Kliuchnikova ◽  
Evgenii Salikov

Sign in / Sign up

Export Citation Format

Share Document