scholarly journals Superdifferential Analysis of the Takagi-Van Der Waerden Functions

Author(s):  
Juan Ferrera ◽  
Javier Gómez Gil ◽  
Jesús Llorente

AbstractIn this work we completely describe the superdifferential of the Takagi-Van der Waerden functions and, as a consequence, the local maxima of these functions are characterized. Regarding the set of points where the superdifferential is not empty, we calculate its Hausdorff dimension as well as its corresponding Hausdorff measure. To do so, for any even integer greater than or equal to two we determine the 1/2-dimensional Hausdorff measure of the set of points where Takagi-Van der Waerden functions attain their global maximum.

Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050053
Author(s):  
XIAOFANG JIANG ◽  
QINGHUI LIU ◽  
GUIZHEN WANG ◽  
ZHIYING WEN

Let [Formula: see text] be the class of Moran sets with integer [Formula: see text] and real [Formula: see text] satisfying [Formula: see text]. It is well known that the Hausdorff dimension of any set in this class is [Formula: see text]. We show that for any [Formula: see text], [Formula: see text] where [Formula: see text] denotes [Formula: see text]-dimensional Hausdorff measure of [Formula: see text]. For any [Formula: see text] with [Formula: see text] there exists a self-similar set [Formula: see text] such that [Formula: see text].


2019 ◽  
Vol 40 (12) ◽  
pp. 3217-3235 ◽  
Author(s):  
AYREENA BAKHTAWAR ◽  
PHILIP BOS ◽  
MUMTAZ HUSSAIN

Let $\unicode[STIX]{x1D6F9}:[1,\infty )\rightarrow \mathbb{R}_{+}$ be a non-decreasing function, $a_{n}(x)$ the $n$th partial quotient of $x$ and $q_{n}(x)$ the denominator of the $n$th convergent. The set of $\unicode[STIX]{x1D6F9}$-Dirichlet non-improvable numbers, $$\begin{eqnarray}G(\unicode[STIX]{x1D6F9}):=\{x\in [0,1):a_{n}(x)a_{n+1}(x)>\unicode[STIX]{x1D6F9}(q_{n}(x))\text{ for infinitely many }n\in \mathbb{N}\},\end{eqnarray}$$ is related with the classical set of $1/q^{2}\unicode[STIX]{x1D6F9}(q)$-approximable numbers ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ in the sense that ${\mathcal{K}}(3\unicode[STIX]{x1D6F9})\subset G(\unicode[STIX]{x1D6F9})$. Both of these sets enjoy the same $s$-dimensional Hausdorff measure criterion for $s\in (0,1)$. We prove that the set $G(\unicode[STIX]{x1D6F9})\setminus {\mathcal{K}}(3\unicode[STIX]{x1D6F9})$ is uncountable by proving that its Hausdorff dimension is the same as that for the sets ${\mathcal{K}}(\unicode[STIX]{x1D6F9})$ and $G(\unicode[STIX]{x1D6F9})$. This gives an affirmative answer to a question raised by Hussain et al [Hausdorff measure of sets of Dirichlet non-improvable numbers. Mathematika 64(2) (2018), 502–518].


Fractals ◽  
2009 ◽  
Vol 17 (02) ◽  
pp. 137-148
Author(s):  
PÉTER MÓRA

It is well-known that the Hausdorff dimension of the Sierpinski triangle Λ is s = log 3/ log 2. However, it is a long standing open problem to compute the s-dimensional Hausdorff measure of Λ denoted by [Formula: see text]. In the literature the best existing estimate is [Formula: see text] In this paper we improve significantly the lower bound. We also give an upper bound which is weaker than the one above but everybody can check it easily. Namely, we prove that [Formula: see text] holds.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


2018 ◽  
Vol 2020 (19) ◽  
pp. 5797-5813 ◽  
Author(s):  
Tuomas Orponen ◽  
Laura Venieri

Abstract For $e \in S^{2}$, the unit sphere in $\mathbb{R}^3$, let $\pi _{e}$ be the orthogonal projection to $e^{\perp } \subset \mathbb{R}^{3}$, and let $W \subset \mathbb{R}^{3}$ be any $2$-plane, which is not a subspace. We prove that if $K \subset \mathbb{R}^{3}$ is a Borel set with $\dim _{\textrm{H}} K \leq \tfrac{3}{2}$, then $\dim _{\textrm{H}} \pi _{e}(K) = \dim _{\textrm{H}} K$ for $\mathcal{H}^{1}$ almost every $e \in S^{2} \cap W$, where $\mathcal{H}^{1}$ denotes the one-dimensional Hausdorff measure and $\dim _{\textrm{H}}$ the Hausdorff dimension. This was known earlier, due to Järvenpää, Järvenpää, Ledrappier, and Leikas, for Borel sets $K$ with $\dim _{\textrm{H}} K \leq 1$. We also prove a partial result for sets with dimension exceeding $3/2$, improving earlier bounds by D. Oberlin and R. Oberlin.


Author(s):  
Balázs Bárány ◽  
Károly Simon ◽  
István Kolossváry ◽  
Michał Rams

This paper considers self-conformal iterated function systems (IFSs) on the real line whose first level cylinders overlap. In the space of self-conformal IFSs, we show that generically (in topological sense) if the attractor of such a system has Hausdorff dimension less than 1 then it has zero appropriate dimensional Hausdorff measure and its Assouad dimension is equal to 1. Our main contribution is in showing that if the cylinders intersect then the IFS generically does not satisfy the weak separation property and hence, we may apply a recent result of Angelevska, Käenmäki and Troscheit. This phenomenon holds for transversal families (in particular for the translation family) typically, in the self-similar case, in both topological and in measure theoretical sense, and in the more general self-conformal case in the topological sense.


Author(s):  
Felix Herold ◽  
Daniel Hug ◽  
Christoph Thäle

AbstractPoisson processes in the space of $$(d-1)$$ ( d - 1 ) -dimensional totally geodesic subspaces (hyperplanes) in a d-dimensional hyperbolic space of constant curvature $$-1$$ - 1 are studied. The k-dimensional Hausdorff measure of their k-skeleton is considered. Explicit formulas for first- and second-order quantities restricted to bounded observation windows are obtained. The central limit problem for the k-dimensional Hausdorff measure of the k-skeleton is approached in two different set-ups: (i) for a fixed window and growing intensities, and (ii) for fixed intensity and growing spherical windows. While in case (i) the central limit theorem is valid for all $$d\ge 2$$ d ≥ 2 , it is shown that in case (ii) the central limit theorem holds for $$d\in \{2,3\}$$ d ∈ { 2 , 3 } and fails if $$d\ge 4$$ d ≥ 4 and $$k=d-1$$ k = d - 1 or if $$d\ge 7$$ d ≥ 7 and for general k. Also rates of convergence are studied and multivariate central limit theorems are obtained. Moreover, the situation in which the intensity and the spherical window are growing simultaneously is discussed. In the background are the Malliavin–Stein method for normal approximation and the combinatorial moment structure of Poisson U-statistics as well as tools from hyperbolic integral geometry.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Matteo Focardi ◽  
Emanuele Spadaro

AbstractBuilding upon the recent results in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] we provide a thorough description of the free boundary for the solutions to the fractional obstacle problem in {\mathbb{R}^{n+1}} with obstacle function φ (suitably smooth and decaying fast at infinity) up to sets of null {{\mathcal{H}}^{n-1}} measure. In particular, if φ is analytic, the problem reduces to the zero obstacle case dealt with in [M. Focardi and E. Spadaro, On the measure and the structure of the free boundary of the lower-dimensional obstacle problem, Arch. Ration. Mech. Anal. 230 2018, 1, 125–184] and therefore we retrieve the same results:(i)local finiteness of the {(n-1)}-dimensional Minkowski content of the free boundary (and thus of its Hausdorff measure),(ii){{\mathcal{H}}^{n-1}}-rectifiability of the free boundary,(iii)classification of the frequencies and of the blowups up to a set of Hausdorff dimension at most {(n-2)} in the free boundary.Instead, if {\varphi\in C^{k+1}(\mathbb{R}^{n})}, {k\geq 2}, similar results hold only for distinguished subsets of points in the free boundary where the order of contact of the solution with the obstacle function φ is less than {k+1}.


1985 ◽  
Vol 26 (2) ◽  
pp. 115-120 ◽  
Author(s):  
Murali Rao

Let D be a domain in Euclidean space of d dimensions and K a compact subset of D. The well known Harnack inequality assures the existence of a positive constant A depending only on D and K such that (l/A)u(x)<u(y)<Au(x) for all x and y in K and all positive harmonic functions u on D. In this we obtain a global integral version of this inequality under geometrical conditions on the domain. The result is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere condition—stated in Section 2. If u is harmonic in D with continuous boundary data f thenwhere ds is the d — 1 dimensional Hausdorff measure on the boundary ժD. A large class of domains satisfy this condition. Examples are C2-domains, convex domains, etc.


2000 ◽  
Vol 11 (08) ◽  
pp. 1057-1078
Author(s):  
JINGBO XIA

Kuroda's version of the Weyl-von Neumann theorem asserts that, given any norm ideal [Formula: see text] not contained in the trace class [Formula: see text], every self-adjoint operator A admits the decomposition A=D+K, where D is a self-adjoint diagonal operator and [Formula: see text]. We extend this theorem to the setting of multiplication operators on compact metric spaces (X, d). We show that if μ is a regular Borel measure on X which has a σ-finite one-dimensional Hausdorff measure, then the family {Mf:f∈ Lip (X)} of multiplication operators on T2(X, μ) can be simultaneously diagonalized modulo any [Formula: see text]. Because the condition [Formula: see text] in general cannot be dropped (Kato-Rosenblum theorem), this establishes a special relation between [Formula: see text] and the one-dimensional Hausdorff measure. The main result of the paper is that such a relation breaks down in Hausdorff dimensions p>1.


Sign in / Sign up

Export Citation Format

Share Document