scholarly journals The q-deformed harmonic oscillator, coherent states, and the uncertainty relation

2006 ◽  
Vol 147 (2) ◽  
pp. 709-715 ◽  
Author(s):  
V. V. Eremin ◽  
A. A. Meldianov
2006 ◽  
Vol 20 (10) ◽  
pp. 1211-1231 ◽  
Author(s):  
J. R. CHOI ◽  
I. H. NAHM

Uncertainty relations for the time-dependent singular oscillator in the number state and in the coherent state are investigated. We applied our developement to the Caldirola–Kanai oscillator perturbed by a singularity. For this system, the variation (Δx) decreased exponentially while (Δp) increased exponentially with time both in the number and in the coherent states. As k → 0 and χ → 0, the number state uncertainty relation in the ground state becomes 0.583216ℏ which is somewhat larger than that of the standard harmonic oscillator, ℏ/2. On the other hand, the uncertainty relation in all excited states become smaller than that of the standard harmonic oscillator with the same quantum number n. However, as k → ∞ and χ → 0, the uncertainty relations of the system approach the uncertainty relations of the standard harmonic oscillator, (n+1/2)ℏ.


2022 ◽  
Vol 9 ◽  
Author(s):  
Xing-Yan Fan ◽  
Wei-Min Shang ◽  
Jie Zhou ◽  
Hui-Xian Meng ◽  
Jing-Ling Chen

As one of the fundamental traits governing the operation of quantum world, the uncertainty relation, from the perspective of Heisenberg, rules the minimum deviation of two incompatible observations for arbitrary quantum states. Notwithstanding, the original measurements appeared in Heisenberg’s principle are strong such that they may disturb the quantum system itself. Hence an intriguing question is raised: What will happen if the mean values are replaced by weak values in Heisenberg’s uncertainty relation? In this work, we investigate the question in the case of measuring position and momentum in a simple harmonic oscillator via designating one of the eigenkets thereof to the pre-selected state. Astonishingly, the original Heisenberg limit is broken for some post-selected states, designed as a superposition of the pre-selected state and another eigenkets of harmonic oscillator. Moreover, if two distinct coherent states reside in the pre- and post-selected states respectively, the variance reaches the lower bound in common uncertainty principle all the while, which is in accord with the circumstance in Heisenberg’s primitive framework.


2001 ◽  
Vol 16 (02) ◽  
pp. 91-98 ◽  
Author(s):  
JULES BECKERS ◽  
NATHALIE DEBERGH ◽  
JOSÉ F. CARIÑENA ◽  
GIUSEPPE MARMO

Previous λ-deformed non-Hermitian Hamiltonians with respect to the usual scalar product of Hilbert spaces dealing with harmonic oscillator-like developments are (re)considered with respect to a new scalar product in order to take into account their property of self-adjointness. The corresponding deformed λ-states lead to new families of coherent states according to the DOCS, AOCS and MUCS points of view.


2018 ◽  
Vol 59 (11) ◽  
pp. 112101 ◽  
Author(s):  
Latévi M. Lawson ◽  
Gabriel Y. H. Avossevou ◽  
Laure Gouba

2019 ◽  
Vol 34 (14) ◽  
pp. 1950104 ◽  
Author(s):  
A. Dehghani ◽  
B. Mojaveri ◽  
S. Amiri Faseghandis

Using the parity deformed Heisenberg algebra (RDHA), we first establish associated coherent states (RDCSs) for a pseudo-harmonic oscillator (PHO) system that are defined as eigenstates of a deformed annihilation operator. Such states can be expressed as superposition of an even and odd Wigner cat states.[Formula: see text] The RDCSs minimize a corresponding uncertainty relation, and resolve an identity condition through a positive definite measure which is explicitly derived. We introduce a class of single-mode excited coherent states (PARDCS) of the PHO through “m” times application of deformed creation operators to RDCS. For the states thus constructed, we analyze their statistical properties such as squeezing and sub-Poissonian statistics as well as their uncertainty relations.


Sign in / Sign up

Export Citation Format

Share Document