Effect of Modification of Titanium Phosphate by Hydrothermal, Microwave, and Mechanochemical Treatment on the Sorption of Cs, Sr, and U(VI) Ions

2019 ◽  
Vol 55 (4) ◽  
pp. 280-286 ◽  
Author(s):  
O. I. Zakutevskyy ◽  
S. V. Khalameida ◽  
V. V. Sydorchuk ◽  
T. A. Shaposhnikova
2021 ◽  
Author(s):  
Artem A. Babaryk ◽  
Alaa Adawy ◽  
Inés García ◽  
Camino Trobajo ◽  
Zakariae Amghouz ◽  
...  

Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) is known for decades, its crystal structure has remained unsolved. Herewith we report the crystal structure of π-TiP at a...


2018 ◽  
Vol 135 (6) ◽  
pp. 2925-2934 ◽  
Author(s):  
W. Janusz ◽  
S. Khalameida ◽  
E. Skwarek ◽  
J. Skubiszewska-Zięba ◽  
V. Sydorchuk ◽  
...  

Author(s):  
Titikshya Mohapatra ◽  
Sakshi Manekar ◽  
Vijyendra Kumar Sahu ◽  
Ashwini Kumar Soni ◽  
Sudip Banerjee ◽  
...  

Abstract This study reports a green approach for the modification of titanium dioxide (TiO2) nanoparticles with immobilization of silver nanoparticles. One of the natural sources i.e., Mangifera indica leaf extract was utilized as reducing and capping agent for the fabrication of Ag-TiO2 nanocatalyst. Further, the surface morphology and band-gap energy of prepared Ag-TiO2 were analyzed by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and UV–Vis spectroscopy. Also, it was characterized by X-ray Powder Diffraction (XRD) which provides the information regarding the crystallinity of the Ag-TiO2. Subsequently, photo activity of Ag-TiO2 was investigated for the degradation of methylene blue (MB) dye wastewater through visible light driven photoreactor. The Ag-TiO2 provided highest (68%) of photo-degradation efficiency within 110 min for 7.81 × 10−5 mol/L initial MB concentration at pH 8 by using 0.19 g/L photocatalyst. Further, addition of 10 mM H2O2 boost up the MB photodegradation to 74%. The kinetic study confirmed the MB degradation followed first order rate of reaction.


2015 ◽  
Vol 294 ◽  
pp. 650-657 ◽  
Author(s):  
Zhifeng Huang ◽  
Li Liu ◽  
Qian Zhou ◽  
Jinli Tan ◽  
Zichao Yan ◽  
...  

2013 ◽  
Vol 78 (4) ◽  
pp. 579-590 ◽  
Author(s):  
Aleksandra Mitrovic ◽  
Miodrag Zdujic

Mechanochemical treatment of Serbian kaolin clay was carried out in a planetary ball mill using two different milling media, hardened steel or zirconia vials and balls. The samples obtained with various milling times were characterized by the particle size laser diffraction (PSLD), X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetry (DTA/TGA) and Fourier-transform infrared (FTIR) analyses. Mechanochemical treatment induced amorphization of the kaolinite phase accompanied by dehydroxylation. It was found that for the given milling parameters, amorphization mainly took place in the milling period up to 15 min, and was completed after about 30 min of milling for both milling media used. The pozzolanic activities were determined by the Chapelle method. Milling in the hardened steel milling medium had no significant influence on pozzolanic activity, even though there was accumulated iron contamination. For both milling media, pozzolanic activity of 0.79 was obtained for the samples milled for 15 min and it remained almost unchanged with prolonged milling. The determined pozzolanic activity values are close to these of commercial metakaolinite or metakaolinite obtained by the calcination of the same clay, therefore, indicating possibility for obtaining high reactive pozzolana by mechanochemical treatment of Serbian kaoline clay.


Sign in / Sign up

Export Citation Format

Share Document