Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens

2005 ◽  
Vol 81 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Shuangxia Jin ◽  
Xianlong Zhang ◽  
Shaoguang liang ◽  
Yichun Nie ◽  
Xiaoping Guo ◽  
...  
1998 ◽  
Vol 25 (2) ◽  
pp. 207 ◽  
Author(s):  
M. Moralejo ◽  
F. Rochange ◽  
A.M. Boudet ◽  
C. Teuliéres

A procedure for genetic transformation of Eucalyptus globulus Labill. using Agrobacterium tumefaciens is described. Young seedlings obtained from mature seeds were chosen as target material. The most important factors affecting transformation efficiency were the nature of the A. tumefaciens strain, precultivation of the seedlings and wounding of the tissues. The optimised procedure allowed us to obtain the first transgenic plants for E. globulus. On selective medium, 1.2% of the inoculated seedlings regenerated shoots resistant to kanamycin and expressing the gusA gene. Molecular evidence for the presence of stably integrated T-DNA is provided for two plants.


2021 ◽  
Vol 22 (8) ◽  
pp. 4181
Author(s):  
Fernando Perez Rojo ◽  
Sumedha Seth ◽  
William Erskine ◽  
Parwinder Kaur

Subterranean clover (Trifolium subterraneum) is the most widely grown annual pasture legume in southern Australia. With the advent of advanced sequencing and genome editing technologies, a simple and efficient gene transfer protocol mediated by Agrobacterium tumefaciens was developed to overcome the hurdle of genetic manipulation in subterranean clover. In vitro tissue culture and Agrobacterium transformation play a central role in testing the link between specific genes and agronomic traits. In this paper, we investigate a variety of factors affecting the transformation in subterranean clover to increase the transformation efficiency. In vitro culture was optimised by including cefotaxime during seed sterilisation and testing the best antibiotic concentration to select recombinant explants. The concentrations for the combination of antibiotics obtained were as follows: 40 mg L−1 hygromycin, 100 mg L−1 kanamycin and 200 mg L−1 cefotaxime. Additionally, 200 mg L−1 cefotaxime increased shoot regeneration by two-fold. Different plant hormone combinations were tested to analyse the best rooting media. Roots were obtained in a medium supplemented with 1.2 µM IAA. Plasmid pH35 containing a hygromycin-resistant gene and GUS gene was inoculated into the explants with Agrobacterium tumefaciens strain AGL0 for transformation. Overall, the transformation efficiency was improved from the 1% previously reported to 5.2%, tested at explant level with Cefotaxime showing a positive effect on shooting regeneration. Other variables in addition to antibiotic and hormone combinations such as bacterial OD, time of infection and incubation temperature may be further tested to enhance the transformation even more. This improved transformation study presents an opportunity to increase the feeding value, persistence, and nutritive value of the key Australian pasture.


2021 ◽  
Vol 7 (7) ◽  
pp. 520
Author(s):  
Jianmin Fu ◽  
Nohelli E. Brockman ◽  
Brian L. Wickes

The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.


2021 ◽  
Vol 22 (14) ◽  
pp. 7328
Author(s):  
Yang Chen ◽  
Mi Zhang ◽  
Lei Wang ◽  
Xiaohan Yu ◽  
Xianbi Li ◽  
...  

Verticillium wilt, caused by Verticillium dahliae, is a devastating disease for many important crops, including cotton. Kiwellins (KWLs), a group of cysteine-rich proteins synthesized in many plants, have been shown to be involved in response to various phytopathogens. To evaluate genes for their function in resistance to Verticillium wilt, we investigated KWL homologs in cotton. Thirty-five KWL genes (GhKWLs) were identified from the genome of upland cotton (Gossypium hirsutum). Among them, GhKWL1 was shown to be localized in nucleus and cytosol, and its gene expression is induced by the infection of V. dahliae. We revealed that GhKWL1 was a positive regulator of GhERF105. Silencing of GhKWL1 resulted in a decrease, whereas overexpression led to an increase in resistance of transgenic plants to Verticillium wilt. Interestingly, through binding to GhKWL1, the pathogenic effector protein VdISC1 produced by V. dahliae could impair the defense response mediated by GhKWL1. Therefore, our study suggests there is a GhKWL1-mediated defense response in cotton, which can be hijacked by V. dahliae through the interaction of VdISC1 with GhKWL1.


Sign in / Sign up

Export Citation Format

Share Document