Large-Scale $$\hbox {CO}_2$$ CO 2 Storage in a Deep Saline Aquifer: Uncertainties in Predictions Due to Spatial Variability of Flow Parameters and Their Modeling

2015 ◽  
Vol 111 (1) ◽  
pp. 215-238 ◽  
Author(s):  
Sarah Bouquet ◽  
Dominique Bruel ◽  
Chantal de Fouquet
2013 ◽  
Vol 37 ◽  
pp. 4445-4456 ◽  
Author(s):  
Sarah Bouquet ◽  
Dominique Bruel ◽  
Chantal de Fouquet

2013 ◽  
Vol 17 (3) ◽  
pp. 1177-1188 ◽  
Author(s):  
B. Li ◽  
M. Rodell

Abstract. Past studies on soil moisture spatial variability have been mainly conducted at catchment scales where soil moisture is often sampled over a short time period; as a result, the observed soil moisture often exhibited smaller dynamic ranges, which prevented the complete revelation of soil moisture spatial variability as a function of mean soil moisture. In this study, spatial statistics (mean, spatial variability and skewness) of in situ soil moisture, modeled and satellite-retrieved soil moisture obtained in a warm season (198 days) were examined over three large climate regions in the US. The study found that spatial moments of in situ measurements strongly depend on climates, with distinct mean, spatial variability and skewness observed in each climate zone. In addition, an upward convex shape, which was revealed in several smaller scale studies, was observed for the relationship between spatial variability of in situ soil moisture and its spatial mean when statistics from dry, intermediate, and wet climates were combined. This upward convex shape was vaguely or partially observable in modeled and satellite-retrieved soil moisture estimates due to their smaller dynamic ranges. Despite different environmental controls on large-scale soil moisture spatial variability, the correlation between spatial variability and mean soil moisture remained similar to that observed at small scales, which is attributed to the boundedness of soil moisture. From the smaller support (effective area or volume represented by a measurement or estimate) to larger ones, soil moisture spatial variability decreased in each climate region. The scale dependency of spatial variability all followed the power law, but data with large supports showed stronger scale dependency than those with smaller supports. The scale dependency of soil moisture variability also varied with climates, which may be linked to the scale dependency of precipitation spatial variability. Influences of environmental controls on soil moisture spatial variability at large scales are discussed. The results of this study should be useful for diagnosing large scale soil moisture estimates and for improving the estimation of land surface processes.


2020 ◽  
Author(s):  
Justin T. Maxwell ◽  
Grant L. Harley ◽  
Trevis J. Matheus ◽  
Brandon M. Strange ◽  
Kayla Van Aken ◽  
...  

Abstract. Our understanding of the natural variability of hydroclimate before the instrumental period (ca. 1900 in the United States; US) is largely dependent on tree-ring-based reconstructions. Large-scale soil moisture reconstructions from a network of tree-ring chronologies have greatly improved our understanding of the spatial and temporal variability in hydroclimate conditions, particularly extremes of both drought and pluvial (wet) events. However, certain regions within these large-scale reconstructions in the US have a sparse network of tree-ring chronologies. Further, several chronologies were collected in the 1980s and 1990s, thus our understanding of the sensitivity of radial growth to soil moisture in the US is based on a period that experienced multiple extremely severe droughts and neglects the impacts of recent, rapid global change. In this study, we expanded the tree-ring network of the Ohio River Valley in the US, a region with sparse coverage. We used a total of 72 chronologies across 15 species to examine how increasing the density of the tree-ring network influences the representation of reconstructing the Palmer Meteorological Drought Index (PMDI). Further, we tested how the sampling date influenced the reconstruction models by creating reconstructions that ended in the year 1980 and compared them to reconstructions ending in 2010 from the same chronologies. We found that increasing the density of the tree-ring network resulted in reconstructed values that better matched the spatial variability of instrumentally recorded droughts and to a lesser extent, pluvials. By sampling tree in 2010 compared to 1980, the sensitivity of tree rings to PMDI decreased in the southern portion of our region where severe drought conditions have been absent over recent decades. We emphasize the need of building a high-density tree-ring network to better represent the spatial variability of past droughts and pluvials. Further, chronologies on the International Tree-Ring Data Bank need updating regularly to better understand how the sensitivity of tree rings to climate may vary through time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256685
Author(s):  
Subhronil Mondal ◽  
Hindolita Chakraborty ◽  
Sandip Saha ◽  
Sahana Dey ◽  
Deepjay Sarkar

Studies on the large-scale latitudinal patterns of gastropod drilling predation reveal that predation pressure may decrease or increase with increasing latitude, or even show no trend, questioning the generality of any large-scale latitudinal or biogeographic pattern. Here, we analyze the nature of spatio-environmental and latitudinal variation in gastropod drilling along the Indian eastern coast by using 76 samples collected from 39 locations, covering ~2500 km, incorporating several ecoregions, and ~15° latitudinal extents. We find no environmental or latitudinal gradient. In fact, drilling intensity varies highly within the same latitudinal bin, or oceanic sub-basins, or even the same ecoregions. Moreover, different ecoregions with their distinctive biotic and abiotic environmental variables show similar predation intensities. However, one pattern is prevalent: some small infaunal prey taxa, living in the sandy-muddy substrate—which are preferred by the naticid gastropods—are always attacked more frequently over others, indicating taxon and size selectivity by the predators. The result suggests that the biotic and abiotic factors, known to influence drilling predation, determine only the local predation pattern. In the present case, the nature of substrate and prey composition determines the local predation intensity: soft substrate habitats host dominantly small, infaunal prey. Since the degree of spatial variability in drilling intensity within any time bin can be extremely high, sometimes greater than the variability across consecutive time bins, temporal patterns in drilling predation can never be interpreted without having detailed knowledge of the nature of this spatial variability within a time bin.


Sign in / Sign up

Export Citation Format

Share Document