scholarly journals Use of Amount-of-Substance Terminology and Equations in Field Desorption Theory

2020 ◽  
Vol 63 (15-18) ◽  
pp. 1502-1508
Author(s):  
Richard G. Forbes

AbstractThis note proposes that the theories of field evaporation and field desorption, as used in atom-probe microscopy and related atomic-level contexts, should be consistently formulated in terms of a set of “seven-dimensional (7-D)” formulae and equations that involve the physical quantity “amount of substance”, but make use of an atomic-level constant effectively equal to “one atom” (or, more generally, “one entity”). It is argued that the term “count” should be introduced as an alternative name (more suited to atomic-level contexts) for the quantity “amount of substance”. For field evaporation/desorption theories, relevant definitions and formulae are proposed, and compared with the “six-dimensional” system (based on the dimensionless quantity “number of atoms/entities”) sometimes used in the literature. Advantages of using a 7-D system are noted. It is argued that there is also an increasing need for a comprehensive system of official nomenclature for atomic-level constants and units, for all three of the extensive quantities “mass”, “electric charge” and “amount of substance”. It is also argued that, in the longer term, considerations of the kind being proposed here for field evaporation/desorption theories might usefully be applied more generally in atomic-level rate theory.

2016 ◽  
Vol 23 (2) ◽  
pp. 336-339 ◽  
Author(s):  
Osamu Nishikawa ◽  
Masahiro Taniguchi

AbstractIn 1994, a new type of atom probe instrument, named the scanning atom probe (SAP), was proposed. The unique feature of the SAP is the introduction of a small extraction electrode, which scans over a specimen surface and confines the high field, required for field evaporation of surface atoms in a small space, between the specimen and the electrode. Thus, the SAP does not require a sharp specimen tip. This indicates that the SAP can mass analyze the specimens which are difficult to form in a sharp tip, such as organic materials and biomolecules. Clean single wall carbon nanotubes (CNT), made by high-pressure carbon monoxide process are found to be the best substrates for biomolecules. Various amino acids and dipeptide biomolecules were successfully mass analyzed, revealing characteristic clusters formed by strongly bound atoms in the specimens. The mass analysis indicates that SAP analysis of biomolecules is not only qualitative, but also quantitative.


2021 ◽  
Vol 27 (S1) ◽  
pp. 404-406
Author(s):  
Charles Fletcher ◽  
Michael Moody ◽  
Jeroen Scheerder ◽  
Claudia Fleischmann ◽  
Brian Geiser ◽  
...  

2017 ◽  
Vol 23 (2) ◽  
pp. 329-335 ◽  
Author(s):  
Chang-Min Kwak ◽  
Young-Tae Kim ◽  
Chan-Gyung Park ◽  
Jae-Bok Seol

AbstractTwo challenges exist in laser-assisted atom probe tomography (APT). First, a drastic decline in mass-resolving power is caused, not only by laser-induced thermal effects on the APT tips of bulk oxide materials, but also the associated asymmetric evaporation behavior; second, the field evaporation mechanisms of bulk oxide tips under laser illumination are still unclear due to the complex relations between laser pulse and oxide materials. In this study, both phenomena were investigated by depositing Ni- and Co-capping layers onto the bulk LaAlO3 tips, and using stepwise APT analysis with transmission electron microscopy (TEM) observation of the tip shapes. By employing the metallic capping, the heating at the surface of the oxide tips during APT analysis became more symmetrical, thereby enabling a high mass-resolving power in the mass spectrum. In addition, the stepwise microscopy technique visualized tip shape evolution during APT analysis, thereby accounting for evaporation sequences at the tip surface. The combination of “capping” and “stepwise APT with TEM,” is applicable to any nonconductors; it provides a direct observation of tip shape evolution, allows determination of the field evaporation strength of oxides, and facilitates understanding of the effects of ultrafast laser illumination on an oxide tip.


2011 ◽  
Vol 17 (3) ◽  
pp. 224-226 ◽  
Author(s):  
Tetsuo Terakawa ◽  
Norihito Mayama ◽  
Yasuko Kajiwara ◽  
Masanori Owari

2017 ◽  
Vol 23 (2) ◽  
pp. 255-268 ◽  
Author(s):  
Michal Dagan ◽  
Baptiste Gault ◽  
George D. W. Smith ◽  
Paul A. J. Bagot ◽  
Michael P. Moody

AbstractAn automated procedure has been developed for the reconstruction of field ion microscopy (FIM) data that maintains its atomistic nature. FIM characterizes individual atoms on the specimen’s surface, evolving subject to field evaporation, in a series of two-dimensional (2D) images. Its unique spatial resolution enables direct imaging of crystal defects as small as single vacancies. To fully exploit FIM’s potential, automated analysis tools are required. The reconstruction algorithm developed here relies on minimal assumptions and is sensitive to atomic coordinates of all imaged atoms. It tracks the atoms across a sequence of images, allocating each to its respective crystallographic plane. The result is a highly accurate 3D lattice-resolved reconstruction. The procedure is applied to over 2000 tungsten atoms, including ion-implanted planes. The approach is further adapted to analyze carbides in a steel matrix, demonstrating its applicability to a range of materials. A vast amount of information is collected during the experiment that can underpin advanced analyses such as automated detection of “out of sequence” events, subangstrom surface displacements and defects effects on neighboring atoms. These analyses have the potential to reveal new insights into the field evaporation process and contribute to improving accuracy and scope of 3D FIM and atom probe characterization.


2021 ◽  
pp. 1-18
Author(s):  
Jesse D. Smith ◽  
Jeong Huh ◽  
Adam Shelton ◽  
Richard F. Reidy ◽  
Marcus L. Young

In the field of high-temperature superconductors, atom probe tomography is a relatively new instrument, with the ability to provide a new perspective on the 3D nanoscale microstructure. However, field evaporation of nonmetallic materials is fraught with unique challenges that matter little in the world of metallic evaporation. In this study, we review the laser absorption, correlated evaporation, molecular dissociation, and the crystallographic effects on the field evaporation of 800-m ${\rm RB}{\rm a}_ 2{\rm C}{\rm u}_ 3{\rm O}_{ 7-{\rm \delta }}$ (R = Gd, Sm) coated conductor tapes deposited by Reactive Co-Evaporation Cyclic Deposition and Reaction (RCE-CDR). Ultraviolet 355 nm laser pulsing was found to have a substantial beneficial effect on minimizing the fracture probability compared with 532 nm illumination, especially when evaporating insulating oxide precipitates. This, in turn, allows for the 3D compositional analysis of defects such as flux pinning centers introduced by precipitation and doping. As a result, evidence for the precipitation of nanoscale ${\rm G}{\rm d}_ 2{\rm C}{\rm u}_ 2{\rm O}_ 5$ is discussed. The effect of crystallographic orientation is studied, where [001] aligned evaporation is found to develop compositional aberrations.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1189-1190
Author(s):  
M. K. Miller

The atom probe field ion microscope can resolve and identify individual atoms. This ability is demonstrated in a pair of field ion micrographs of an Ni3Al specimen, Fig. 1, in which the individual atoms on the close packed (111) plane are clearly resolved. Comparison of these two micrographs reveals that an individual atom was field evaporated between the micrographs. Due to the hemispherical nature of the specimen, the ability to resolve this two dimensional atomic arrangement is only possible on low index plane facets. The spatial resolution in field ion images is determined by a number of factors including specimen temperature, material, microstructural features, specimen geometry, and crystallographic location.The spatial resolution of the data obtained in atom probe and 3 dimensional atom probe compositional analyses can be evaluated with the use of field evaporation or field desorption images. The field evaporation images are formed from the surface atoms with the use of a single atom sensitive detector whereas the field ion image is formed from the projection of a continuous supply of ionized image gas atoms.


2019 ◽  
Vol 156 ◽  
pp. 109871 ◽  
Author(s):  
David L.J. Engberg ◽  
Lina Tengdelius ◽  
Hans Högberg ◽  
Mattias Thuvander ◽  
Lars Hultman

Sign in / Sign up

Export Citation Format

Share Document