scholarly journals Comparative spatial spread overtime of Zucchini Yellow Mosaic Virus (ZYMV) and Watermelon Mosaic Virus (WMV) in fields of transgenic squash expressing the coat protein genes of ZYMV and WMV, and in fields of nontransgenic squash

2006 ◽  
Vol 15 (5) ◽  
pp. 527-541 ◽  
Author(s):  
Ferdinand E. Klas ◽  
Marc Fuchs ◽  
Dennis Gonsalves
HortScience ◽  
1995 ◽  
Vol 30 (3) ◽  
pp. 492-493 ◽  
Author(s):  
Juan Pablo Arce-Ochoa ◽  
Frank Dainello ◽  
Leonard M. Pike ◽  
David Drews

`Pavo', a commercially grown, virus-susceptible squash (Cucurbita pepo L.) hybrid, and two experimental virus-resistant transgenic squash hybrids, XPH-1719 and XPH-1739, were tested for field performance. The two transgenic squash hybrids possess the desired fruit and plant characteristics of their parental line, `Pavo', plus resistance to zucchini yellow mosaic virus and watermelon mosaic virus 2 (XPH-1719), and resistance to zucchini yellow mosaic virus, watermelon mosaic virus 2, and cucumber mosaic virus (XPH-1739). Percent emergence and days to flowering were similar among the three hybrids. XPH-1719 and XPH-1739 were equally effective in producing a high percentage of quality marketable fruit and yields with 90% and 13,800 kg·ha–1 and 87% and 16,500 kg·ha–1, respectively. XPH-1719 and XPH-1739 demonstrated their outstanding virus resistance over `Pavo' by producing only 3% and 14% symptomatic plants, respectively, compared to 53% for `Pavo'. They also produced the lowest percentage of infected fruit, 0% and 7%, respectively, with `Pavo' at 26%.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 471B-471
Author(s):  
S. Alan Walters ◽  
Jeff D. Kindhart ◽  
Houston A. Hobbs ◽  
Darin M. Eastburn

Cucurbit viruses are a major hindrance to cucurbit production in southern Illinois, often rendering cucumber and summer squash fruit unmarketable. Specific viruses infecting cucurbits in the region need to be determined since this would enable growers to make better decisions on virus disease management. Leaf samples of various cucurbit vegetables that had symptoms of viral infection were collected from grower fields during the 1998 and 1999 growing seasons to determine the predominant cucurbit viruses present. Samples were assayed for the presence of five individual viruses: cucumber mosaic virus (CMV), papaya ringspot virus (PRSV, formerly watermelon mosaic virus-1), squash mosaic virus (SqMV), watermelon mosaic virus (WMV, formerly watermelon mosaic virus-2), and zucchini yellow mosaic virus (ZYMV). Results from the two years indicated that WMV was the most prevalent virus in southern Illinois. Cucumber mosaic virus was found both years, but only in a low percentage of samples collected each year. Two cucurbit viruses, PRSV and ZYMV, were each identified only in one sample during the 1998 growing season, and neither were found in any of the samples collected during 1999. Squash mosaic virus was not identified in any of the samples collected during 1998; however, for the 1999 growing season, SqMV was identified in 19% of the samples collected, primarily from those samples of transgenic squash that were showing symptoms of virus infection.


Plant Disease ◽  
2010 ◽  
Vol 94 (7) ◽  
pp. 923-923 ◽  
Author(s):  
W. S. Tsai ◽  
I. K. Abdourhamane ◽  
D. Knierim ◽  
J. T. Wang ◽  
L. Kenyon

The aphid-transmitted Zucchini yellow mosaic virus (ZYMV; genus Potyvirus, family Potyviridae) has been reported to cause severe epidemics and yield losses in cucurbit crops worldwide (1). In Africa, ZYMV has been detected in Algeria, Egypt, Madagascar, Mauritius, Mayotte, Morocco, Nigeria, Reunion, South Africa, Sudan, Swaziland, and Tunisia (1). In April 2009, leaf yellowing, mosaic, crinkling, and curling were common on cucurbit plants in fields in Mali. Symptomatic leaf samples were collected from five cucumber (Cucumis sativus) plants in Kati, two watermelon (Citrullus lanatus) plants in Samanko, and one weedy melon (Cucumis sp.) plant in Baguineda. All samples tested positive for ZYMV and were negative for Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), Papaya ringspot virus type W (PRSV-W), Watermelon mosaic virus (WMV), and Watermelon silver mottle virus (WSMoV) by double-antibody sandwich (DAS)-ELISA. They also tested negative for Melon yellow spot virus (MYSV) by indirect ELISA. Antibodies against ZYMV and WMV were obtained from DSMZ, Braunschweig, Germany, and those against CGMMV, MYSV, PRSV-W, and WSMoV were provided by Shyi-Dong Yeh, National Chung Hsing University, Taichung, Taiwan. Six ZYMV ELISA-positive samples (three cucumber, two watermelon, and the weedy melon sample) were also tested by reverse transcription (RT)-PCR using the potyvirus universal primer pair Sprimer1/Oligo(dT) (2). The expected 1.6-kb viral cDNA was amplified from all six samples and each was sequenced. All sequences obtained from cucumber (GenBank Accession Nos. HM005307, HM005308, and HM005309), watermelon (GenBank Accession Nos. HM005311 and HM005312), and weedy melon (GenBank Accession No. HM005310) isolates were 1,684 nucleotides (nt) long excluding the 3′ poly-A tails. They comprised the 3′-terminal of the NIb region (1 to 633 nt), the coat protein region (634 to 1473 nt), and the 3′-untranslated region (1,474 to 1,684 nt). Because the sequences shared high nucleotide identity (98.3 to 99.7%), these isolates were considered to be the same virus species. When the sequences were compared by BLASTn searching in GenBank and analyzed by DNAMAN Sequence Analysis Software (Lynnon Corporation, St-Louis, Pointe-Claire, Quebec, Canada), they were found to have the greatest nucleotide identity (97.4 to 98.0%) with the Connecticut strain of ZYMV (ZYMV-Connecticut; GenBank Accession No. D00692), within a clade of isolates from China, Italy, Japan, and the United States. When assessed separately, their coat protein (97.7 to 98.3% nucleotide and 98.9 to 99.6% amino acid identity) and 3′-untranslated regions (96.7 to 97.2% identity) also had greatest homology with ZYMV-Connecticut. To our knowledge, this is the first report of ZYMV infecting cucurbit plants in Mali. ZYMV should be taken into consideration when breeding cucurbit crops for this region, and managing viral diseases. References: (1) C. Desbiez et al. Plant Pathol. 46:809, 1997. (2) W. S. Tsai et al. Plant Dis. 94:378, 2010.


Pathogens ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 53
Author(s):  
Vivek Khanal ◽  
Harrington Wells ◽  
Akhtar Ali

Field information about viruses infecting crops is fundamental for understanding the severity of the effects they cause in plants. To determine the status of cucurbit viruses, surveys were conducted for three consecutive years (2016–2018) in different agricultural districts of Oklahoma. A total of 1331 leaf samples from >90 fields were randomly collected from both symptomatic and asymptomatic cucurbit plants across 11 counties. All samples were tested with the dot-immunobinding assay (DIBA) against the antisera of 10 known viruses. Samples infected with papaya ringspot virus (PRSV-W), watermelon mosaic virus (WMV), zucchini yellow mosaic virus (ZYMV), and cucurbit aphid-borne-yellows virus (CABYV) were also tested by RT-PCR. Of the 10 viruses, PRSV-W was the most widespread, with an overall prevalence of 59.1%, present in all 11 counties, followed by ZYMV (27.6%), in 10 counties, and WMV (20.7%), in seven counties, while the remaining viruses were present sporadically with low incidence. Approximately 42% of the infected samples were positive, with more than one virus indicating a high proportion of mixed infections. CABYV was detected for the first time in Oklahoma, and the phylogenetic analysis of the first complete genome sequence of a CABYV isolate (BL-4) from the US showed a close relationship with Asian isolates.


Plant Disease ◽  
2007 ◽  
Vol 91 (3) ◽  
pp. 232-238 ◽  
Author(s):  
M. A. Kassem ◽  
R. N. Sempere ◽  
M. Juárez ◽  
M. A. Aranda ◽  
V. Truniger

Despite the importance of field-grown cucurbits in Spain, only limited information is available about the impact of disease on their production. During the 2003 and 2004 growing seasons, systematic surveys were carried out in open field melon (Cucumis melo) and squash (Cucurbita pepo) crops of Murcia Province (Spain). The fields were chosen with no previous information regarding their sanitation status, and samples were taken from plants showing viruslike symptoms. Samples were analyzed using molecular hybridization to detect Beet pseudo-yellows virus (BPYV), Cucurbit aphid-borne yellows virus (CABYV), Cucumber mosaic virus (CMV), Cucumber vein yellowing virus (CVYV), Cucurbit yellow stunting disorder virus (CYSDV), Melon necrotic spot virus (MNSV), Papaya ringspot virus (PRSV), Watermelon mosaic virus (WMV), and Zucchini yellow mosaic virus (ZYMV). We collected 924 samples from 48 field plots. Out of these, almost 90% were infected by at least one of the viruses considered, usually CABYV, which was present in 83 and 66% of the melon and squash samples, respectively. In the case of melon, CYSDV, BPYV, and WMV followed CABYV in relative importance, with frequencies of around 20 to 30%, while in squash, CVYV and BPYY showed frequencies between 28 and 21%. The number of multiple infections was very high, 66 and 56% of the infected samples of melon and squash, respectively, being afflicted. CABYV was present in all multiple infections. The high incidence of CABYV in single and multiple infections suggests that this virus may well become an important threat for cucurbit crops in the region. Restriction fragment length polymorphism (RFLP) analysis revealed that CABYV isolates can be grouped into two genetic types, both of which seemed to be present during the 2003 epidemic episode, but only one of the types was found in 2004.


Sign in / Sign up

Export Citation Format

Share Document