Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector

2011 ◽  
Vol 21 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Renyu Xue ◽  
Huimei Chen ◽  
Linlin Cui ◽  
Guangli Cao ◽  
Wenlin Zhou ◽  
...  
1997 ◽  
Vol 17 (9) ◽  
pp. 5571-5580 ◽  
Author(s):  
G Dellaire ◽  
N Lemieux ◽  
A Belmaaza ◽  
P Chartrand

Ectopic gene targeting is an alternative outcome of the gene targeting process in which the targeting vector acquires sequences from the genomic target but proceeds to integrate elsewhere in the genome. Using two-color fluorescent in situ hybridization analysis, we have determined the integration sites of the gene targeting vector with respect to the target locus in a murine fibroblast line (LTA). We found that for ectopic gene targeting the distribution of integration sites was bimodal, being either within 3 Mb of the target or on chromosomes distinct from the chromosome carrying the target locus. Inter- and intrachromosomal sites appeared to be equally accessible to the targeting vector, with site-specific variations. Interestingly, interphase analysis indicated that vector sequences which had integrated ectopically in chromosomes other than the target colocalized with the target locus at a significant frequency compared to that of colocalization to random unlinked loci. We propose that ectopic gene targeting could be used to determine which chromosomal domains within the genome are accessible to a given genetic locus. Thus, recombination access mapping may present a new paradigm for the analysis of DNA accessibility and interaction within the genome.


PLoS ONE ◽  
2018 ◽  
Vol 13 (1) ◽  
pp. e0191507 ◽  
Author(s):  
Qiujie Qian ◽  
Zhengying You ◽  
Lupeng Ye ◽  
Jiaqian Che ◽  
Yiran Wang ◽  
...  

2013 ◽  
Vol 163 (4) ◽  
pp. 377-385 ◽  
Author(s):  
Shaohua Wang ◽  
Kun Zhang ◽  
Fangrong Ding ◽  
Rui Zhao ◽  
Song Li ◽  
...  

2021 ◽  
Author(s):  
Roger Caothien ◽  
Charles Yu ◽  
Lucinda Tam ◽  
Robert Newman ◽  
Brian Nakao ◽  
...  

Abstract Gene targeting in mouse ES cells replaces or modifies genes of interest; conditional alleles, reporter knock-ins, and amino acid changes are common examples of how gene targeting is used. For example, enhanced green fluorescent protein or Cre recombinase is placed under the control of endogenous genes to define promoter expression patterns. The most important step in the process is to demonstrate that a gene targeting vector is correctly integrated in the genome at the desired chromosomal location. The rapid identification of correctly targeted ES cell clones is facilitated by proper targeting vector construction, rapid screening procedures, and advances in cell culture. The addition of magnetic activated cell sorting (MACS) technology and multiplex droplet digital PCR (ddPCR) to the ES cell screening process can achieve a greater than 60% assurance that ES clones are correctly targeted. In a further refinement of the process, drug selection cassettes are removed from ES cells with adenovirus technology. This improved workflow reduces the time needed to generate preclinical animal models. Faster access to animal models for therapeutic target identification and experimental validation can accelerate the development of therapies for human disease.


2012 ◽  
Vol 24 (1) ◽  
pp. 230
Author(s):  
S. Kim ◽  
J. W. Kim ◽  
S. M. Lee ◽  
J. H. Kim ◽  
M. J. Kang

Gene targeting is a genetic technique that utilises homologous recombination between an engineered exogenous DNA fragment and the endogenous genome of an animal. In domestic animals, gene targeting has provided an important tool for producing knockout pigs for the α1,3-galactosyltransferase gene (GGTA1) to use in xenotransplantation. The frequency of homologous recombination is a critical parameter for the success of gene targeting. The efficiency of homologous recombination in somatic cells is lower than that in mouse embryonic stem cells. The application of gene targeting to somatic cells has been limited by its low efficiency. Recently, knockout rat and mouse were generated by introducing nonhomologus end joining (NHE)-mediated deletion or insertion at the target site using zinc-finger nucleases (ZFN). Therefore, the development of effective knockout and knock-in techniques in domestic animals is very important in biomedical research. In this study, we investigated homologous recombination events at the cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) gene locus using ZFN in porcine primary fibroblast. The CMAH-targeted ZFN plasmid and mRNA were purchased from Sigma-Aldrich (St Louis, MO, USA). Porcine ear fibroblasts cells were obtained from a 10-day-old male Chicago miniature pigs. The fibroblasts were cultured in DMEM containing 15% fetal bovine serum, 1 × nonessential amino acids, 1 × sodium pyruvate, 10–4 M β-mercaptoethanol, 100 unit mL–1 penicillin and 100 μg mL–1 streptomycin. The cells were trypsinized and resuspended at a concentration of 1.25 × 107 cells mL–1 in F10 nutrient mixture. Four hundred microliters of the cell suspension was electroporated in a 4-mm cuvette with 4 pulses of 1 ms duration using 400V capacitive discharges using the CMAH neo targeting vector and ZFN plasmid or RNA. The CMAH neo targeting vector consists of the neomycin resistance gene (neo) as a positive selectable marker gene, 789-bp 5′ arm and 763-bp 3′ arm from exon 8 of CMAH gene. After selection of G-418, PCR analysis was performed using 64 colonies transfected with ZFN plasmid and 48 colonies transfected with ZFN RNA. As a result, 19 positive colonies were identified in colonies transfected with ZFN plasmid and 15 colonies were identified in colonies transfected with ZFN RNA. The targeting efficiency was 29.7 and 31.6% in the colonies transfected with ZFN plasmid and ZFN RNA, respectively. To our knowledge, this study provides the first evidence that the efficiency of gene targeting using ZFN was higher than that of conventional gene targeting in the porcine fibroblast. These cell lines may be used in production of CMAH knockouts for xenotransplantation.


2013 ◽  
Vol 22 (5) ◽  
pp. 925-938 ◽  
Author(s):  
Feng Wang ◽  
Hanfu Xu ◽  
Lin Yuan ◽  
Sanyuan Ma ◽  
Yuancheng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document