Genetic and phenotypic correlations between backfat thickness and weight at 28 weeks of age, and reproductive performance in primiparous Landrace sows raised under tropical conditions

2022 ◽  
Vol 54 (1) ◽  
Author(s):  
Praew Thiengpimol ◽  
Skorn Koonawootrittriron ◽  
Thanathip Suwanasopee
1970 ◽  
Vol 50 (3) ◽  
pp. 593-599 ◽  
Author(s):  
M. H. FAHMY ◽  
C. BERNARD

Data on body weights at five ages (birth, 21, 42, 56 and 140 days) and pre- and post-weaning average daily gains of 6846 pigs from 780 dams and 161 sires in three lines were analyzed to determine the effects of some environmental factors, to estimate heritabilities, to calculate genetic and phenotypic correlations and to ascertain the associations between these traits and some economically important characters in swine. Significant year effects occurred in all traits other than birth and 21-day weights; line effects were highly significant for birth and 21-day weights but were not significant at subsequent stages. Sex effect was pronounced only at older ages. Males were consistently heavier than females up to weaning age. Unweighted averages of estimates of heritability derived by two methods were 0.17, 0.09, 0.11, 0.13, 0.10, 0.12, and 0.07 for weights at birth, 21, 42, 56, and 140 days, and pre- and post-weaning average daily gains, respectively. The genetic and phenotypic correlations between the seven characters were positive and generally high. Favorable genetic and phenotypic associations were found between birth, weaning and 140-day weights and feed utilization, age at finish, carcass length and average backfat thickness. Weights at weaning and 140 days of age were negatively correlated with carcass score and loin eye area.


2021 ◽  
pp. 074873042098363
Author(s):  
Alejandro A. Aguirre ◽  
Roberto A. Palomares ◽  
Aitor D. De Ondiz ◽  
Eleazar R. Soto ◽  
Mariana S. Perea ◽  
...  

Evidence has accumulated over the years indicating that the moon influences some aspects of the reproductive activity in animals and humans. However, little is known about the influence of the lunar cycle on the reproductive performance of cows under tropical conditions, where the environment strongly affects reproduction. This retrospective study was conducted with the aim of assessing the influence of the lunar cycle on some reproductive traits of tropical crossbred cows managed in a pasture-based system. Data from 5869 reproductive records from two commercial farms localized in the Maracaibo Lake Basin of Zulia State, Venezuela, were analyzed. Variables studied were first service conception rate, calving frequency, first postpartum estrous frequency, and pregnancy frequency. In addition to the lunar cycle, the effects of farm, season, and predominant breed were also considered. Data were analyzed using logistic regression and general linear model from SAS. First service conception was affected by lunar phases and predominant breed, but not by farm or season. For frequencies of calving, first postpartum estrus, and pregnancy, there was no main effect of farm, season, and predominant breed, whereas the effect of lunar phases was highly significant. First service conception was significantly greater in waning than in crescent phase of the lunar cycle. Frequencies of calving, first estrus, and pregnancy were highly correlated and showed greater figures around full moon and new moon. In conclusion, lunar cycle influenced first service conception, attaining greater values in the waning phase of the moon cycle. Frequencies of calving, first postpartum estrus, and pregnancy in crossbred cows showed a clear bimodal rhythm, whose greatest values coincided with new moon and full moon.


Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1409-1416 ◽  
Author(s):  
Kenneth R Koots ◽  
John P Gibson

Abstract A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values.


1989 ◽  
Vol 40 (2) ◽  
pp. 433 ◽  
Author(s):  
SI Mortimer ◽  
KD Atkins

Wool production traits were measured on Merino hogget ewes in an unselected multiple-bloodline flock over a 7-year period at Trangie Agricultural Research Centre, N.S.W. The traits measured were greasy fleece weight (GFW), skirted fleece weight (SKFW), yield (Y), clean fleece weight (CFW), fibre diameter (FD), body weight (BWT) and staple length (SL). These measurements were used to examine genetic differences between and within flocks of Merino sheep, and to estimate heritability of and genetic and phenotypic correlations among these traits. Significant strain, flock within strain and flock effects were present for all traits. Interactions between these effects and year were non-significant. Within-flock genetic variance was always larger than between-flock within strain genetic variance for each trait. The influence of environmental effects on these traits was also examined. The environmental effects of birth-rearing type, age at observation and age of dam together accounted for about 7-10% of the total within-flock variation in fleece weights and body weight.After adjusting for significant environmental effects, paternal half-sib heritability estimates were 0.29 �. 0.06 for GFW, 0.22 � 0.05 for SKFW, 0.35 � 0.05 for Y, 0.30 �0.06 for CFW, 0.48 �0.07 for FD, 0.34 �. 0.06 for BWT and 0.44 �0.07 for SL. Estimates for genetic and phenotypic correlations were in agreement with published estimates except for the genetic correlation between CFW and FD (0.40 �. 0.11), and the genetic correlations involving BWT, which were essentially zero. The implications of the results of this study for the genetic improvement of Merino sheep for wool production are discussed.


1969 ◽  
Vol 11 (3) ◽  
pp. 361-367 ◽  
Author(s):  
M. H. Fahmy ◽  
E. Salah E. Galal ◽  
Y. S. Ghanem ◽  
S. S. Khishin

SUMMARYRecords on 695 lambs were collected over a period of 5 years from 1961/62 to 1965/66, at Ras El-Hekma Desert Research Station, 230 km west of Alexandria. The characters studied were birth, weaning and yearling body weights, pre- and post-weaning daily gains and greasy fleece weight.Birth, 120-day and 365-day body weights were 3·4, 18·2 and 33·4 kg respectively. Greasy fleece weight at 16 months of age was 3·29 kg. Heritability estimates of birth, weaning, yearling weights, pre- and post-weaning daily gains and greasy fleece weight were 0·22, 0·45, 0·41,0·45 and 0·29 respectively. Genetic and phenotypic correlations between birth, weaning and yearling weights were all positive and significant. Genetic correlations between fleece weight and body characteristics were negative and low.


1985 ◽  
Vol 34 (3) ◽  
pp. 365-365
Author(s):  
R. GUEBLEZ ◽  
J. M. GESTIN ◽  
Geneviève LE HENAFF

2018 ◽  
Author(s):  
Sebastian M. Sodini ◽  
Kathryn E. Kemper ◽  
Naomi R. Wray ◽  
Maciej Trzaskowski

AbstractAccurate estimation of genetic correlation requires large sample sizes and access to genetically informative data, which are not always available. Accordingly, phenotypic correlations are often assumed to reflect genotypic correlations in evolutionary biology. Cheverud’s conjecture asserts that the use of phenotypic correlations as proxies for genetic correlations is appropriate. Empirical evidence of the conjecture has been found across plant and animal species, with results suggesting that there is indeed a robust relationship between the two. Here, we investigate the conjecture in human populations, an analysis made possible by recent developments in availability of human genomic data and computing resources. A sample of 108,035 British European individuals from the UK Biobank was split equally into discovery and replication datasets. 17 traits were selected based on sample size, distribution and heritability. Genetic correlations were calculated using linkage disequilibrium score regression applied to the genome-wide association summary statistics of pairs of traits, and compared within and across datasets. Strong and significant correlations were found for the between-dataset comparison, suggesting that the genetic correlations from one independent sample were able to predict the phenotypic correlations from another independent sample within the same population. Designating the selected traits as morphological or non-morphological indicated little difference in correlation. The results of this study support the existence of a relationship between genetic and phenotypic correlations in humans. This finding is of specific interest in anthropological studies, which use measured phenotypic correlations to make inferences about the genetics of ancient human populations.


2021 ◽  
Vol 38 (1) ◽  
pp. 14-22
Author(s):  
M. Orunmuyi ◽  
I. A. Adeyinka ◽  
O.O Oni

A study was conducted to estimate the genetic parameters of fertility and hatchability in two strains of Rhode Island Red (RIR) Chickens denoted as Strain A and Strain B respectively using the full-sib (sire +dam variance) and maternal half-sib (dam variance) components. The birds were obtained from the selected populations of RIR Chickens kept at the poultry breeding programme of National Animal Production Research Institute, Shika, Zaria, Nigeria. Settable eggs were collected from mating 28 cocks to 252 hens in a ratio of 1cock:9 hens from each strain. Eggs were pedigreed according to sire and dam. Results showed that values obtained for number of egg set (EGGSET), number of fertile eggs (NFERT), number of hatched chicks (NHATCH), percentage of chicks hatched from total eggs set (PHATCH) and percentage of chicks hatched from fertile eggs (PHATCHBL) were all higher in strain A than strain B. Heritability estimates obtained from the full-sib and maternal half-sib analysis ranged from medium to high for the two strains (0.24-0.96). The maternal half sib estimates were higher (0.40-0.96) than the estimates obtained from full sibs (0.24- 0.48). Genetic and phenotypic correlations obtained for both strains were positive and similar regardless of method of estimation. Genetic correlations between EGGSET and PFERT were low in strain A using both full-sib and maternal half-sib analyses (0.09-0.14). Phenotypic correlations between EGGSET and PFERT, PHATCH and PHATCHBL were also low in both strains and regardless of method of analyses. Moderate to high heritability estimates suggest that genetic improvement can be obtained by selection of these reproductive traits. The full-sib analysis for estimating heritability will be preferred since it is assumed that only additive genetic variance contributes to the covariance between family members.


Sign in / Sign up

Export Citation Format

Share Document