On Isometric Immersion of Three-Dimensional Geometries $$\widetilde{SL}_2$$ , Nil, and Sol into a Four-Dimensional Space of Constant Curvature

2005 ◽  
Vol 57 (3) ◽  
pp. 509-516 ◽  
Author(s):  
L. A. Masal'tsev
2018 ◽  
Vol 18 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Silvio Reggiani

Abstract We determine the index of symmetry of 3-dimensional unimodular Lie groups with a left-invariant metric. In particular, we prove that every 3-dimensional unimodular Lie group admits a left-invariant metric with positive index of symmetry. We also study the geometry of the quotients by the so-called foliation of symmetry, and we explain in what cases the group fibers over a 2-dimensional space of constant curvature.


2002 ◽  
Vol 7 (3) ◽  
pp. 113-123
Author(s):  
Dimitrios E. Kalikakis

This paper proves that any nonregular nonparametric saddle surface in a three-dimensional space of nonzero constant curvaturek, which is bounded by a rectifiable curve, is a space of curvature not greater thankin the sense of Aleksandrov. This generalizes a classical theorem by Shefel' on saddle surfaces in𝔼3.


1992 ◽  
Vol 07 (06) ◽  
pp. 507-512 ◽  
Author(s):  
A.S. ZHEDANOV

The Higgs algebra (i.e., the hidden symmetry algebra of the Coulomb problem in the two-dimensional space of constant curvature) is investigated. Consisting of 3 generators, the Higgs algebra can be considered as a second-order approximation to SU q(2). ‘Classical’ and ‘nonclassical’ representations and realizations of the Higgs algebra are found.Connections with other Lie and quadratic algebras are discussed.


Author(s):  
David A. Agard ◽  
Yasushi Hiraoka ◽  
John W. Sedat

In an effort to understand the complex relationship between structure and biological function within the nucleus, we have embarked on a program to examine the three-dimensional structure and organization of Drosophila melanogaster embryonic chromosomes. Our overall goal is to determine how DNA and proteins are organized into complex and highly dynamic structures (chromosomes) and how these chromosomes are arranged in three dimensional space within the cell nucleus. Futher, we hope to be able to correlate structual data with such fundamental biological properties as stage in the mitotic cell cycle, developmental state and transcription at specific gene loci.Towards this end, we have been developing methodologies for the three-dimensional analysis of non-crystalline biological specimens using optical and electron microscopy. We feel that the combination of these two complementary techniques allows an unprecedented look at the structural organization of cellular components ranging in size from 100A to 100 microns.


Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


2004 ◽  
Vol 71 ◽  
pp. 1-14
Author(s):  
David Leys ◽  
Jaswir Basran ◽  
François Talfournier ◽  
Kamaldeep K. Chohan ◽  
Andrew W. Munro ◽  
...  

TMADH (trimethylamine dehydrogenase) is a complex iron-sulphur flavoprotein that forms a soluble electron-transfer complex with ETF (electron-transferring flavoprotein). The mechanism of electron transfer between TMADH and ETF has been studied using stopped-flow kinetic and mutagenesis methods, and more recently by X-ray crystallography. Potentiometric methods have also been used to identify key residues involved in the stabilization of the flavin radical semiquinone species in ETF. These studies have demonstrated a key role for 'conformational sampling' in the electron-transfer complex, facilitated by two-site contact of ETF with TMADH. Exploration of three-dimensional space in the complex allows the FAD of ETF to find conformations compatible with enhanced electronic coupling with the 4Fe-4S centre of TMADH. This mechanism of electron transfer provides for a more robust and accessible design principle for interprotein electron transfer compared with simpler models that invoke the collision of redox partners followed by electron transfer. The structure of the TMADH-ETF complex confirms the role of key residues in electron transfer and molecular assembly, originally suggested from detailed kinetic studies in wild-type and mutant complexes, and from molecular modelling.


Sign in / Sign up

Export Citation Format

Share Document