Positive association of vigorous and moderate physical activity volumes with skeletal muscle mass but not bone density or metabolism markers in hemodialysis patients

2014 ◽  
Vol 46 (3) ◽  
pp. 633-639 ◽  
Author(s):  
Yoshiyuki Morishita ◽  
Kazuya Kubo ◽  
Atushi Miki ◽  
Kenichi Ishibashi ◽  
Eiji Kusano ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tomoaki Takata ◽  
Yukari Mae ◽  
Kentaro Yamada ◽  
Sosuke Taniguchi ◽  
Shintaro Hamada ◽  
...  

Abstract Background Hyporesponsiveness to erythropoietin stimulating agent (ESA) is associated with poor outcomes in patients with chronic kidney disease. Although ESA hyporesponsiveness and sarcopenia have a common pathophysiological background, clinical evidence linking them is scarce. The purpose of the study was to investigate the relationship between ESA responsiveness and skeletal muscle mass in hemodialysis patients. Methods This cross-sectional study analyzed 70 patients on maintenance hemodialysis who were treated with ESA. ESA responsiveness was evaluated by erythropoietin resistance index (ERI), calculated as a weekly dose of ESA divided by body weight and hemoglobin (IU/kg/week/dL), and a weekly dose of ESA/hemoglobin (IU/week/dL). A dose of ESA is equivalated to epoetin β. Correlations between ESA responsiveness and clinical parameters including skeletal muscle mass were analyzed. Results Among the 70 patients, ERI was positively correlated to age (p < 0.002) and negatively correlated to height (p < 0.001), body weight (p < 0.001), BMI (p < 0.001), skeletal muscle mass (p < 0.001), transferrin saturation (TSAT) (p = 0.049), and zinc (p = 0.006). In the multiple linear regression analysis, TSAT, zinc, and skeletal muscle mass were associated with ERI and weekly ESA dose/hemoglobin. Conclusions Skeletal muscle mass was the independent predictor for ESA responsiveness as well as TSAT and zinc. Sarcopenia is another target for the management of anemia in patients with hemodialysis.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Vicent Esteve Simó ◽  
Anna Junqué Jiménez ◽  
Verónica Duarte Gallego ◽  
Irati Tapia González ◽  
Fátima Moreno Guzmán ◽  
...  

Abstract Background and Aims Sarcopenia is a skeletal muscle disorder associated with adverse outcomes including falls, physical disability and mortality particularly in hemodialysis (HD) patients. Currently, progressive resistance training exercise has been shown a proven method to treat and prevent sarcopenia. Nevertheless, these findings are poorly investigated in HD patients since exercise programs are not widespread. The aim of our study was to assess the effect of a home-based resistance exercise program (HBREP) on muscular strength, functional capacity and body composition in our hemodialysis patients with sarcopenia according to the European Working Group on Sarcopenia in Older People criteria (EWGSOP2). Method A 12 weeks single-center prospective study. HD patients from our institution with EWGSOP2 sarcopenia diagnosis were enrolled in a HBREP. Demographical an anthropometrical data, main biochemical and nutritional parameters, hand grip (HG) muscular strength, functional capacity tests: Sit to stand to seat 5 (STS5); Short Physical Performance Battery (SPPB), gait speed (GS), as well as body composition determined by electrical bioimpedance (BIA) and sarcopenia severity were analized. Results 18 HD patients with sarcopenia (71.4% severe) were included (4 drop out).78.6% men. Mean age 74.7 years and 53.3 months on HD. The main etiologies of ESRD were the HBP (21.4%) and DM (14.3%). Globally, a significant improvement was observed at the end of the study in relation to muscular strength (HG 19.9±6.1 vs 22.2±7.1 kg, p 0.001) and functional capacity tests (STS5 21.9±10.3 vs 17.2±9.9 sec, p 0.001; SPPB (6.9±2.3 vs 9.1±2.5 score, p 0.001 and GS 0.8±0.1 vs 0.9±0.2 m/s, p 0.015). Likewise, higher total skeletal muscle mass (SMM, 14.3±2.8 vs 14.5±2.9 kg) and SMM index (SMM/height2, 5.5±0.7 vs 5.7±0.9 Kg/m2 ) were found at the end of the study, although these differences were not significant. Finally, 2 patients (14.8%) reverse the EWGSOP2 sarcopenia criteria and 3 (21.4%) enhanced their severe sarcopenia. No relevant changes regarding anthropometrical data, main biochemical and nutritional parameters or dialysis adequacy were observed at the end of the study. Conclusion A home-based resistance exercise program improves muscular strength, functional capacity and body composition in our sarcopenic hemodialysis patients. With our results, home-based resistance exercise programs should be considered a key point in the prevention and treatment of skeletal muscle mass reduction due to sarcopenia in these patients. Further studies are mandatory to confirm our encouraging results.


Author(s):  
Tomoaki Takata ◽  
Aki Motoe ◽  
Katsumi Tanida ◽  
Sosuke Taniguchi ◽  
Ayami Ida ◽  
...  

2017 ◽  
Vol 32 (suppl_3) ◽  
pp. iii589-iii590
Author(s):  
Hiroshi Ogawa ◽  
Toshimitsu Koga ◽  
Yoshihiro Ota ◽  
Yuko Kojima ◽  
Azumi Sato ◽  
...  

2008 ◽  
Vol 40 (Supplement) ◽  
pp. S393
Author(s):  
Colleen M. McCracken ◽  
Louisa D. Raisbeck ◽  
Jonathon L. Stickford ◽  
Sandra Tecklenberg ◽  
Jeanne D. Johnston ◽  
...  

2009 ◽  
Vol 106 (6) ◽  
pp. 2040-2048 ◽  
Author(s):  
René Koopman ◽  
Luc J. C. van Loon

Aging is accompanied by a progressive loss of skeletal muscle mass and strength, leading to the loss of functional capacity and an increased risk of developing chronic metabolic disease. The age-related loss of skeletal muscle mass is attributed to a disruption in the regulation of skeletal muscle protein turnover, resulting in an imbalance between muscle protein synthesis and degradation. As basal (fasting) muscle protein synthesis rates do not seem to differ substantially between the young and elderly, many research groups have started to focus on the muscle protein synthetic response to the main anabolic stimuli, i.e., food intake and physical activity. Recent studies suggest that the muscle protein synthetic response to food intake is blunted in the elderly. The latter is now believed to represent a key factor responsible for the age-related decline in skeletal muscle mass. Physical activity and/or exercise stimulate postexercise muscle protein accretion in both the young and elderly. However, the latter largely depends on the timed administration of amino acids and/or protein before, during, and/or after exercise. Prolonged resistance type exercise training represents an effective therapeutic strategy to augment skeletal muscle mass and improve functional performance in the elderly. The latter shows that the ability of the muscle protein synthetic machinery to respond to anabolic stimuli is preserved up to very old age. Research is warranted to elucidate the interaction between nutrition, exercise, and the skeletal muscle adaptive response. The latter is needed to define more effective strategies that will maximize the therapeutic benefits of lifestyle intervention in the elderly.


Sign in / Sign up

Export Citation Format

Share Document