Are seed germination and ecological breadth associated? Testing the regeneration niche hypothesis with bromeliads in a heterogeneous neotropical montane vegetation

Plant Ecology ◽  
2014 ◽  
Vol 215 (5) ◽  
pp. 517-529 ◽  
Author(s):  
Andréa Rodrigues Marques ◽  
Allbens P. F. Atman ◽  
Fernando A. O. Silveira ◽  
José Pires de Lemos-Filho
2011 ◽  
Vol 27 (2) ◽  
pp. 170-173 ◽  
Author(s):  
FERNANDO AUGUSTO OLIVEIRA SILVEIRA ◽  
DANIEL NEGREIROS ◽  
LUZIA MÁRCIA ARAÚJO ◽  
GERALDO WILSON FERNANDES

Author(s):  
Túlio G. S. Oliveira ◽  
Alexandre A. Duarte ◽  
Isabela P. Diamantino ◽  
Queila S. Garcia

1997 ◽  
Vol 24 (1) ◽  
pp. 69 ◽  
Author(s):  
M. Battaglia

This paper develops a population-based threshold model to describe the combined action of sub- and supra-optimal temperatures, water stress and the release of dormancy by cool-moist stratification on the germination of seeds of Eucalyptus delegatensis R.T. Baker. Separate models were fitted for seed samples collected from five climatically differing regions. The model presumes that the time to germination of a given seed fraction is inversely proportional to the difference between the actual level of a given germination factor and the factor threshold. The model then assumes that variation in this factor threshold within a seed population as a whole can be characterised by a normal, or log-normal, distribution. By using physiological time rather than clock time as a metric, the model was extended to describe germination under varying conditions in the field. A number of applications of the model were demonstrated. The correlation of model parameters with regional climate was tested and it was concluded that site temperature affected both the mean and variation in base population sensitivities to stratification-dose but that site rainfall affected only the mean base population sensitivity to water stress with all populations having a common variance. Examination of the model parameters relating to the release of dormancy indicated that the increased germination rate associated with stratification could be accounted for by progress towards germination made at stratifying temperatures. Finally, the model was used to examine the fundamental regeneration niche of E. delegatensis and it was concluded that abundant germination in the field could only be expected when the soil water potential is above –0.4 MPa and temperatures exceed 7.5°C. The model is presented as a flexible framework that allows for the prediction of field germination and as a useful tool for exploring seed germination processes, and the fundamental regeneration niche of the species. The modelling framework is easily modified to include additional factors and factor interactions applicable to other situations and species.


1991 ◽  
Vol 83 (1) ◽  
pp. 34-40 ◽  
Author(s):  
Yohji Esashi ◽  
Shinichi Matsuyama ◽  
Hiroki Ashino ◽  
Maria Ogasawara ◽  
Ryo Hasegawa

Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
A Soleymanifard ◽  
R Naseri ◽  
A Mirzaei ◽  
H Naserirad

Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
YA Jeon ◽  
HS Lee ◽  
ES Park ◽  
YY Lee ◽  
JS Sung ◽  
...  

2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.


2011 ◽  
Vol 12 (3) ◽  
pp. 263-267 ◽  
Author(s):  
R. D. Cox ◽  
L. H. Kosberg ◽  
N. L. Shaw ◽  
S. P. Hardegree

2014 ◽  
Vol 15 (2) ◽  
pp. 109-118
Author(s):  
S. L. Love ◽  
R. R. Tripepi ◽  
T. Salaiz

Sign in / Sign up

Export Citation Format

Share Document