IMPACT OF FERTILIZERS APPLICATION ON SEED GERMINATION AND SEEDLING GROWTH OF VIGNA RADIATA

2018 ◽  
Vol 24 (2) ◽  
Author(s):  
SUPRIYA DIXIT ◽  
R. K. GUPTA

Currently, a real challenge for the workers in the agricultural research field is to stop or reduce the use of expensive agrochemicals/ chemical fertilizers which are hazardous to the environment as well as human health. Present study was aimed to improve the growth and obtain optimum yield of Vigna crop with eco-friendly, non-toxic way and to reduce the use of agrochemical/chemical fertilizer application in agricultural activities. A pot experiment was conducted to study the effect of chemical fertilizer (DAP) and biofertilizer ( Rhizobium strain) separately and in combination on seed germination and seedling growth (at 30 days) based on morphological parameters such as seedling length (cm), fresh weight (g), dry weight (g) and leaf area (cm)2 of Vigna radiata (L.) Wilczek. After one month (30 Days) observations, it was found that seedling length, fresh and dry weights and leaf area were maximum in T4 and minimum in T15, T7 and T8 favored improved seedling length and leaf area whereas T7, T8, and T9 favored improved fresh and dry weights as compared to control.

2019 ◽  
Vol 11 (2) ◽  
pp. 321-326
Author(s):  
Sanchita Bhattacharya ◽  
Sourav Debnath ◽  
Sanjit Debnath ◽  
Ajay Krishna Saha

Growth attributes of Vigna mungo and Vigna radiata crop influenced by level and type of fertilizers. The present study was carried out to evaluate and compare the effects of organic (vermicompost) and inorganic (urea) fertilizers on the germination percentage and seedling growth of V. radiata (Green gram) and V. mungo (Black gram). Fresh weight and dry weight of tested plant samples at 10th days of growth stage were also determined. Vermicompost was used as organic fertilizer and urea as inorganic fertilizer. Experimental results showed that vermicompost and urea both has positive effect on seedling growth parameters of V. mungo and V. radiata [average root length (6.1cm and 6.7cm)] , shoot length (6.5cm and 8.3cm), leaf area (312.2 sq.cm and 334.1 sq.cm] as compared to control set [average root length (4.4cm and 4.3cm)] , shoot length (6cm and 5.9cm), leaf area (282.7 sq.cm and 305.5 sq.cm). But urea exerts negative effect on seed germination percentage in V. mungo and V. radiata (58% and 50%) as compared to control (77%). Vermicompost exhibited better result in above parameters in comparison to urea. V. mungo showed increased value in comparison considering V. radiata in case of organic, inorganic fertilizer treated as well as control sets. As composition of locally available fertilizers is unknown, the application of these fertilizers for improving germination percentage and growth parameters of tested crop need to be evaluated. Present work may provide the suggestive approach for usage of these tested fertilizers in field level trial.


Author(s):  
Namrah Zafar ◽  
Muhammad Zafar Iqbal ◽  
Muhammad Shafiq ◽  
Muhammad Kabir ◽  
Zia-ur-Rehman Farooqi

Aim: This study was conducted to examine the effects of exhaust pollutants and garden soil extract on seed germination and seedling growth of some economically important crops, maize and sunflower. Study Design: The in-vitro experimental design was completely randomized. Place and Duration of Study: The experimental site was Department of Botany, University of Karachi, Pakistan and the experiment was lasted for 10 days in Ecology laboratory. Methodology: The seeds of maize and sunflower were placed in front of the generator to exposed exhaust pollutants daily, 10 minutes, for 10 days. After the exposure of exhaust gas seeds were shifted into Petri dishes. The garden soil was obtained from mini garden of the Department of Botany, University of Karachi. The different concentrations of garden soil with distilled water were made and filtered. This filtered solution was assumed as the standard solution, which was 100%. From this standard solution, further dilution of 25%, 50% and 75% were made. Distilled water was used as a control for the experiment. Three best seedlings were selected from each Petri dish for the determination of mean values of seed germination (percentage), root, shoot and seedling length and seedling dry weight.   Results: This publication will help to understand the importance of exhaust pollutant impact and soil on crop growth and productivity. The soil quality influences plant growth and identifies the impact of exhaust emission on plant growth. The effects of exhaust pollutants of the generator and different concentration of garden soil on seed germination and seedling growth of two important crops Zea mays (L.) maize and sunflower Helianthus annuus (L.) were recorded. The treatment of different concentration of garden soil extract (0, 25, 50, 75, and 100%) affected seed germination percentage, root, shoot, and seedling length and seedling dry weight of both crop species. The soil extract at 25% significantly (p<0.05) affected the seed germination percentage of H. annuus as compared to control. The treatment of soil extract also decreased seedling growth performance of Z. mays and H. annuus as compared to control. A significant (p<0.05) decrease in seedling length of Z. mays becomes evident that exhaust treatment affected the seedling dry weight performance of maize as compared to control. Similarly, exposure of exhaust pollutant affected the seedling dry weight of Z. mays and H. annuus as compared to control treatment.  The effects of garden soil extract on seed germination and seedling growth of Z. mays was found higher as compared H. annuus. Conclusion: It was concluded that the treatment of exhaust emissions from a portable power generator fueled negatively affected the seed germination and seedling growth performance of maize and sunflower as compared to control treatment. A comparison between the seed germination percentage, seedling growth and biomass production performance of maize was found highly affected as compared to sunflower.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yankun Sun ◽  
Jiaqi Xu ◽  
Xiangyang Miao ◽  
Xuesong Lin ◽  
Wanzhen Liu ◽  
...  

AbstractAs the global population continues to increase, global food production needs to double by 2050 to meet the demand. Given the current status of the not expansion of cultivated land area, agronomic seedlings are complete, well-formed and strong, which is the basis of high crop yields. The aim of this experiment was to study the effects of seed germination and seedling growth in response to silicon (from water-soluble Si fertilizer). The effects of Si on the maize germination, seedling growth, chlorophyll contents, osmoprotectant contents, antioxidant enzyme activities, non-enzymatic antioxidant contents and stomatal characteristics were studied by soaking Xianyu 335 in solutions of different concentrations of Si (0, 5, 10, 15, 20, and 25 g·L−1). In this study, Si treatments significantly increased the seed germination and per-plant dry weight of seedlings (P < 0.05), and the optimal concentration was 15 g·L−1. As a result of the Si treatment of the seeds, the chlorophyll content, osmotic material accumulation and antioxidant defence system activity increased, reducing membrane system damage, reactive oxygen species contents, and stomatal aperture. The results suggested that 15 g·L−1 Si significantly stimulated seed germination and promoted the growth of maize seedlings, laying a solid foundation for subsequent maize growth.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam Yousif Adam Ali ◽  
Muhi Eldeen Hussien Ibrahim ◽  
Guisheng Zhou ◽  
Nimir Eltyb Ahmed Nimir ◽  
Aboagla Mohammed Ibrahim Elsiddig ◽  
...  

AbstractSalinity one of environmental factor that limits the growth and productivity of crops. This research was done to investigate whether GA3 (0, 144.3, 288.7 and 577.5 μM) and nitrogen fertilizer (0, 90 and 135 kg N ha−1) could mitigate the negative impacts of NaCl (0, 100, and 200 mM NaCl) on emergence percentage, seedling growth and some biochemical parameters. The results showed that high salinity level decreased emergence percentage, seedling growth, relative water content, chlorophyll content (SPAD reading), catalase (CAT) and peroxide (POD), but increased soluble protein content, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. The SOD activity was decreased by nitrogen. However, the other measurements were increased by nitrogen. The interactive impact between nitrogen and salinity was significant in most parameters except EP, CAT and POD. The seedling length, dry weight, fresh weight, emergence percentage, POD, soluble protein and chlorophyll content were significantly affected by the interaction between GA3 and salinity. The GA3 and nitrogen application was successful mitigating the adverse effects of salinity. The level of 144.3 and 288.7 μm GA3 and the rate of 90 and 135 kg N ha−1 were most effective on many of the attributes studied. Our study suggested that GA3 and nitrogen could efficiently protect early seedlings growth from salinity damage.


1997 ◽  
Vol 75 (11) ◽  
pp. 1903-1912 ◽  
Author(s):  
Kyeong W. Yun ◽  
M. A. Maun

Greenhouse studies were conducted to test allelopathic effects of Artemisia campestris ssp. caudata on seed germination and seedling growth of several sand-dune species and colonization by mycorrhizal fungi. The aqueous extracts of A. campestris showed no inhibitory effect on seed germination, seedling elongation, or dry-weight growth of plants at lower concentrations (10 and 50%), but 100% concentration of the extracts caused varying degrees of inhibition depending on the test species. The mixing of dry leaves of seedlings of A. campestris to the sand showed severe inhibition of Elymus canadensis seedlings. The percent germination of test species in soil from the rhizosphere of A. campestris was significantly lower than that of the control. The leaf area and dry weight were also lower but the differences were not significant. The aqueous extract inhibited mycorrhizal fungal colonization in roots of three sand-dune grasses. Key words: allelopathy, Artemisia campestris ssp. caudata, seed germination, seedling growth, mycorrhizal fungi.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 274
Author(s):  
Ademola Adetunji ◽  
Sershen ◽  
Boby Varghese ◽  
Norman Pammenter

Aged seeds exhibit compromised vigour in terms of germination, seedling emergence and growth, but this can to some extent be alleviated by invigoration treatments before sowing. This study aimed to investigate ageing rates and patterns in cabbage (Brassica oleraceae) and lettuce (Lactuca sativa) seeds and whether the beneficial effects of invigorating aged seeds with exogenous antioxidants translate to enhanced seedling performance. Seeds were artificially aged to 25% viability before soaking in 0.4 mM glycerol, 0.6 mM GSH and 0.2 mM trolox for cabbage, and 0.6 mM glycerol, GSH and trolox for lettuce; deionised water served as a control. After 14 days of sowing, seedling emergence percentage, mean emergence time, mean daily emergence, and time taken to 25% emergence were computed. Seedling vigour index, root and shoot dry weight, root:shoot ratio, leaf area, leaf area ratio, and leaf chlorophyll content were assessed 6 weeks after sowing. Furthermore, the photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (E), and chlorophyll fluorescence were measured 6 weeks after sowing. Notably, ageing resulted in the loss of seed vigour and viability at higher rates in lettuce than cabbage. Seed pretreatment with glycerol promoted seedling growth in both species and shoot dry weight in lettuce, while glycerol and GSH enhanced Pn, Gs and E in lettuce. Trolox also enhanced Pn and E in lettuce. The beneficial effects of the antioxidant treatments are thought to be associated with the protection of photosystems from oxidative stress and/or stimulation of enzymes involved in photosynthesis, possibly through an enhanced antioxidant defence system during the early development stages when seedlings are particularly vulnerable to stress.


2021 ◽  
Vol 1 (1) ◽  
pp. 39-43
Author(s):  
Gunawan Budiyanto ◽  
Mulyono Mulyono ◽  
Fiyoni Dwi Setyawan

A research to study the effects of Zeolite and nitrogen fertilizer application on vegetative growth of maize crop in coastal sandy soil was conducted on the research field of Agriculture Faculty, Muhammadiyah University of Yogyakarta at Tamantirto, Bantul District of Yogyakarta during October until February, 2003. This research was aimed on the study of Zeolite application in order to enhance the nitrogen uptake in the coastal sandy soil, and its effects on vegetative growth of CP I variety of maize. The pot experiment was arranged in 7 x 3 factorial completely randomized design, with 4 replications. The first factor was Zeolite dosage consisted of 7 levels, i.e:  0, 3, 4, 5, 6, 7, and 8 %; and the second one was 3 levels nitrogen fertilizer dosage which consisted of: 75, 110, and 145 kg/ ha. The nitrogen fertilizer was applied on the medium mixed with Zeolite granules. Observations on plant height, stem diemeter, leaves number, plant fresh and dry weight were done during the vegetative growth of maize. The results showed that Zeolite application significantly enhanced the vegetative growth of CPI maize. The 5,2  - 5,6  % Zeolite was optimum to gave the maximum growth of maize crop. Nitrogen fertilizer application was also significantly increased the plant height and biomass weight, and the 145 kg/ha was the optimum dosage. There was no interaction between Zeolite and nitrogen fertilizer application in order to affected the maize growth.


2010 ◽  
Vol 62 (10) ◽  
pp. 2459-2466 ◽  
Author(s):  
Han Peng ◽  
Wu Geng ◽  
Wu Yong-quan ◽  
Li Mao-teng ◽  
Xiang Jun ◽  
...  

In this paper, we report the effects of heavy metals (HMs) (cadmium and mercury) on seed germination and seedling growth of Phragmites australis and Triarrhena sacchariflora, which are the two main typical emerging plants in Hongze Lake wetland. The results showed that there was a reduction in germination percentage, germination index and seedling length as HM concentration in the growing media increased for both treatments. The effect of HMs toxicity on seed germination and seedling growth of T. sacchariflora was more obvious than of P. australis. At the stage of seed germination, P. australis and T. sacchariflora were sensitive to Hg2 +  and Cd2 + , respectively, and Hg2 +  was more toxic than Cd2 +  at the stage of seedling growth. The effect of HMs toxicity is not invariable during plant growth. Compared to the stage of seedling growth, P. australis and T. sacchariflora are more susceptible to HMs at the stage of seed germination. In addition, we calculated the ecological thresholds of P. australis to Cd and Hg are 19.32 and 1.08 mg kg−1, and that of T. sacchariflora to Cd is 4.62 mg kg−1 based on the lab simulation. The results also indicated that the species of P. australis is more tolerant than T. sacchariflora to the HMs and is a better candidate for restoration in Hongze Lake wetland ecosystem.


HortScience ◽  
2018 ◽  
Vol 53 (2) ◽  
pp. 236-241 ◽  
Author(s):  
Benjamin K. Hoover

The first objective of this study was to assess the effects of coconut shell biochar in propagation substrate on seed germination and seedling growth of Coreopsis grandiflora (Hogg ex Sweet) ‘Early Sunrise’, Leucanthemum ×superbum (Bergman ex J. Ingram) ‘Silver Princess’, and Eschscholzia californica (Cham.). Cornell seed germination mix was amended with the biochar (0%, 5%, 10%, 20%, or 40%, v/v). Seed germination and seedling growth were determined during a 21-day period in two germination rooms. This particular biochar amendment did not affect final germination percentage for any of the species. All three species had seedling shoot and primary root length growth with low to moderate positive correlation (r = 0.33–0.54) with coconut shell biochar amendment volume. Coreopsis seedling dry weight was significantly higher with 40% biochar than the control (P ≤ 0.05). The second objective of the study was to compare digitally collected data with manually collected data. Two-dimensional scans of Coreopsis and Leucanthemum seedlings were collected. Seedling dry weight (mg) and seedling length (mm) predicted seedling two-dimensional area for Coreopsis (R2 = 0.73, P < 0.001) and Leucanthemum (R2 = 0.87, P < 0.001). Digitally traced shoot and root lengths were strongly positively correlated (r = 0.99–0.97) with manual ruler measurements, suggesting that digital imaging could replace manual length measurements. The results of this study suggest inclusion of this particular coconut shell biochar in seed germination, and establishment substrates can have neutral or positive effects on herbaceous perennial germination and establishment.


2010 ◽  
Vol 56 (No. 4) ◽  
pp. 194-199 ◽  
Author(s):  
M. Kabir ◽  
M.Z. Iqbal ◽  
M. Shafiq ◽  
Z.R. Farooqi

The effects of lead on root, shoot and seedling length, leaf area, number of leaves, plant circumference, seedling dry weight, root/shoot and leaf area ratios of <I>Thespesia populnea</I> L. were determined in greenhouse under natural environmental conditions with and without phytotoxic metal ions at 5, 10, 15, 20, and 25 µmol/l. Lead treatments have a strong influence on the growth and development of <I>T</I>. <I>populnea</I> by reducing significantly (<I>P</I> &lt; 0.05) all the above parameters. Lead treatment at 5–25 µmol/l produced significant (<I>P</I> &lt; 0.05) effects on seedling and root length, plant circumference and seedling dry weight of <I>T</I>.<I> populnea,</I> while lead treatment at 10–25 µmol/l produced significant (<I>P</I> &lt; 0.05) effects on shoot length, number of leaves and leaf area as compared to control. Tolerance in <I>T</I>.<I> populnea</I> seedling at 25 µmol/l of lead treatment was lowest as compared to all other treatments.


Sign in / Sign up

Export Citation Format

Share Document