Fire enhances litter decomposition and reduces vegetation cover influences on decomposition in a dry woodland

Plant Ecology ◽  
2017 ◽  
Vol 218 (7) ◽  
pp. 799-811 ◽  
Author(s):  
H. L. Throop ◽  
M. Abu Salem ◽  
W. G. Whitford
SOIL ◽  
2015 ◽  
Vol 1 (1) ◽  
pp. 207-216 ◽  
Author(s):  
G. Certini ◽  
L. S. Vestgarden ◽  
C. Forte ◽  
L. Tau Strand

Abstract. Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna vulgaris (L.) Hull., Molinia caerulea (L.) Moench, or Sphagnum capillifolium (Ehrh.) Hedw. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year by placing litterbags filled with biomass from each dominant species in each type of vegetation cover. The composition of the plant material and SOM was investigated using chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that, in the studied environment, litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for climate-change-induced modifications to SOM and its potential to last.


2014 ◽  
Vol 1 (1) ◽  
pp. 267-294 ◽  
Author(s):  
G. Certini ◽  
L. S. Vestgarden ◽  
C. Forte ◽  
L. Tau Strand

Abstract. Norwegian heathland soils, although scant and shallow, are major reservoirs of carbon (C). We aimed at assessing whether vegetation cover and, indirectly, its driving factor soil drainage are good proxies for soil organic matter (SOM) composition and dynamics in a typical heathland area of Southern Norway consisting in a patchwork of three different types of vegetation, dominated by Calluna, Molinia, or Sphagnum. Such vegetation covers were clearly associated to microtopographic differences, which in turn dictated differences in soil moisture regime, Calluna growing in the driest sites, Sphagnum in the wettest, and Molinia in sites with intermediate moisture. Litter decomposition was followed over a period of 1 year, by placing litterbags filled with biomass from each dominant species under each type of vegetation cover. The composition of the living biomass, the bulk SOM and some extractable fractions of SOM were investigated by chemical methods and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Litter decomposition was faster for Molinia and Calluna, irrespective of the vegetation cover of the site where they were placed. Sphagnum litter decomposed very slowly, especially under Calluna, where the soil environment is by far more oxidising than under itself. In terms of SOM quality, Calluna covered areas showed the greatest differences from the others, in particular a much higher contribution from lipids and aliphatic biopolymers, apparently related to biomass composition. Our findings showed that in the studied environment litter decomposition rate and SOM composition are actually dependent on vegetation cover and/or soil drainage. On this basis, monitoring changes in the patchwork of vegetation types in boreal heathlands could be a reliable cost-effective way to account for modifications in the SOM potential to last induced by climate change.


2012 ◽  
Author(s):  
Thomas J. Brandeis ◽  
Elvia J. Meléndez-Ackerman ◽  
Eileen H. Helmer

Author(s):  
M. I. Dzhalalova ◽  
A. B. Biarslanov ◽  
D. B. Asgerova

The state of plant communities in areas located in the Tersko-Sulak lowland was studied by assessing phytocenotic indicators: the structure of vegetation cover, projective cover, species diversity, species abundance and elevated production, as well as automated decoding methods. There are almost no virgin soils and natural phytocenoses here; all of them have been transformed into agrocenoses (irrigated arable lands and hayfields, rice-trees and pastures). The long-term impact on pasture ecosystems of natural and anthropogenic factors leads to significant changes in the indigenous communities of this region. Phytocenoses are formed mainly by dry-steppe types of cereals with the participation of feather grass, forbs and ephemera, a semi-desert haloxerophytic shrub - Taurida wormwood. At the base of the grass stand is common coastal wormwood and Taurida wormwood - species resistant to anthropogenic influences. Anthropogenic impacts have led to a decrease in the number of species of feed-rich grain crops and a decrease in the overall productivity of pastures. Plant communities in all areas are littered with ruderal species. The seasonal dynamics of the land cover of the sites was estimated by the methods of automatic decoding of satellite images of the Landsat8 OLI series satellite for 2015, dated by the periods: spring - May 20, summer - July 23, autumn - October 20. Satellite imagery data obtained by Landsat satellite with a resolution in the multispectral image of 30 m per pixel, and in the panchromatic image - 10 m per pixel, which correspond to the requirements for satellite imagery to assess the dynamics of soil and vegetation cover. Lower resolution data, for example, NDVI MODIS, does not provide a reliable reflection of the state of soil and vegetation cover under arid conditions. In this regard, remote sensing data obtained from the Internet resource https://earthexplorer.usgs.gov/ was used.


Sign in / Sign up

Export Citation Format

Share Document