scholarly journals A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation

Author(s):  
Martin Bauer ◽  
Nicolas Charon ◽  
Philipp Harms ◽  
Hsi-Wei Hsieh
2021 ◽  
Vol 11 (11) ◽  
pp. 4845
Author(s):  
Mohammad Hossein Noorsalehi ◽  
Mahdi Nili-Ahmadabadi ◽  
Seyed Hossein Nasrazadani ◽  
Kyung Chun Kim

The upgraded elastic surface algorithm (UESA) is a physical inverse design method that was recently developed for a compressor cascade with double-circular-arc blades. In this method, the blade walls are modeled as elastic Timoshenko beams that smoothly deform because of the difference between the target and current pressure distributions. Nevertheless, the UESA is completely unstable for a compressor cascade with an intense normal shock, which causes a divergence due to the high pressure difference near the shock and the displacement of shock during the geometry corrections. In this study, the UESA was stabilized for the inverse design of a compressor cascade with normal shock, with no geometrical filtration. In the new version of this method, a distribution for the elastic modulus along the Timoshenko beam was chosen to increase its stiffness near the normal shock and to control the high deformations and oscillations in this region. Furthermore, to prevent surface oscillations, nodes need to be constrained to move perpendicularly to the chord line. With these modifications, the instability and oscillation were removed through the shape modification process. Two design cases were examined to evaluate the method for a transonic cascade with normal shock. The method was also capable of finding a physical pressure distribution that was nearest to the target one.


Author(s):  
Paolo Piras ◽  
Valerio Varano ◽  
Maxime Louis ◽  
Antonio Profico ◽  
Stanley Durrleman ◽  
...  

AbstractStudying the changes of shape is a common concern in many scientific fields. We address here two problems: (1) quantifying the deformation between two given shapes and (2) transporting this deformation to morph a third shape. These operations can be done with or without point correspondence, depending on the availability of a surface matching algorithm, and on the type of mathematical procedure adopted. In computer vision, the re-targeting of emotions mapped on faces is a common application. We contrast here four different methods used for transporting the deformation toward a target once it was estimated upon the matching of two shapes. These methods come from very different fields such as computational anatomy, computer vision and biology. We used the large diffeomorphic deformation metric mapping and thin plate spline, in order to estimate deformations in a deformational trajectory of a human face experiencing different emotions. Then we use naive transport (NT), linear shift (LS), direct transport (DT) and fanning scheme (FS) to transport the estimated deformations toward four alien faces constituted by 240 homologous points and identifying a triangulation structure of 416 triangles. We used both local and global criteria for evaluating the performance of the 4 methods, e.g., the maintenance of the original deformation. We found DT, LS and FS very effective in recovering the original deformation while NT fails under several aspects in transporting the shape change. As the best method may differ depending on the application, we recommend carefully testing different methods in order to choose the best one for any specific application.


Author(s):  
Talat Körpınar ◽  
Yasin Ünlütürk

AbstractIn this research, we study bienergy and biangles of moving particles lying on the surface of Lorentzian 3-space by using their energy and angle values. We present the geometrical characterization of bienergy of the particle in Darboux vector fields depending on surface. We also give the relationship between bienergy of the surface curve and bienergy of the elastic surface curve. We conclude the paper by providing bienergy-curve graphics for different cases.


2021 ◽  
Vol 155 (3) ◽  
pp. 034111
Author(s):  
Saeed Moayedpour ◽  
Derek Dardzinski ◽  
Shuyang Yang ◽  
Andrea Hwang ◽  
Noa Marom

1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


Author(s):  
Gaurang Ruhela ◽  
Anirvan DasGupta

We consider the problem of a hopping ball excited by a travelling harmonic wave on an elastic surface. The ball, considered as a particle, is assumed to interact with the surface through inelastic collisions. The surface motion due to the wave induces a horizontal drift in the ball. The problem is treated analytically under certain approximations. The phase space of the hopping motion is captured by constructing a phase-velocity return map. The fixed points of the return map and its compositions represent periodic hopping solutions. The linear stability of the obtained periodic solution is studied in detail. The minimum frequency for the onset of periodic hops, and the subsequent loss of stability at the bifurcation frequency, have been determined analytically. Interestingly, for small values of wave amplitude, the analytical solutions reveal striking similarities with the results of the classical bouncing ball problem.


2010 ◽  
Vol 204 (4) ◽  
pp. 575-584 ◽  
Author(s):  
Gonzalo Márquez ◽  
Xavier Aguado ◽  
Luis M. Alegre ◽  
Ángel Lago ◽  
Rafael M. Acero ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document