Estimating Land Use Impacts on Regional Scale Urban Water Balance and Groundwater Recharge

2008 ◽  
Vol 23 (9) ◽  
pp. 1863-1873 ◽  
Author(s):  
Bin He ◽  
Yi Wang ◽  
Keiji Takase ◽  
Goro Mouri ◽  
Bam H. N. Razafindrabe
2021 ◽  
Vol 13 (1) ◽  
pp. 1-20
Author(s):  
Abdelwassie Hussien ◽  
Tesfamichael Gebreyohannes ◽  
Miruts Hagos ◽  
Gebremedhin Berhane ◽  
Kassa Amare ◽  
...  

Due to the ever-increasing demand for water in Aynalem catchment and its surrounding, there has been an increased pressure on the Aynalem well field putting the sustainability of water supply from the aquifer under continuous threat. Thus, it is vital to understand the water balance of the catchment to ensure sustainable utilization of the groundwater resource. This in turn requires proper quantification of the components of water balance among which recharge estimation is the most important. This paper estimates the groundwater recharge of the Aynalem catchment using high-resolution hydro-meteorological data. Daily precipitation and temperature measurement data for years 2001-2018; groundwater level fluctuation records collected at every 30 minutes; and soil and land use maps were used to make recharge estimations. In the groundwater level fluctuation, three boreholes were monitored, but only two were utilized for the analysis because the third was under operation and does not represent the natural hydrologic condition. Thornthwaite soil moisture balance and groundwater level fluctuation methods were applied to determine the groundwater recharge of the Aynalem catchment. Accordingly, the annual rate of groundwater recharge estimated based on the soil-water balance ranges between 7mm/year and 138.5 mm/year with the weighted average value of 89.04 mm/year. The weighted average value is considered to represent the catchment value because the diverse soil and land use/cover types respond differently to allow the precipitation to recharge the groundwater. On the other hand, the groundwater recharge estimated using the groundwater level fluctuation method showed yearly groundwater recharge of 91 to 93 mm/year. The similarity in the groundwater recharge result obtained from both methods strengthens the acceptability of the estimate. It also points out that the previously reported estimate is much lower (36 to 66 mm/year).


Author(s):  
Steve Auger ◽  
Yuestas David ◽  
Wilfred Ho ◽  
Sakshi Sani ◽  
Amanjot Singh ◽  
...  

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 178
Author(s):  
Muhammad Aslam ◽  
Ali Salem ◽  
Vijay P. Singh ◽  
Muhammad Arshad

Evaluation of the spatial and temporal distribution of water balance components is required for efficient and sustainable management of groundwater resources, especially in semi-arid and data-poor areas. The Khadir canal sub-division, Chaj Doab, Pakistan, is a semi-arid area which has shallow aquifers which are being pumped by a plethora of wells with no effective monitoring. This study employed a monthly water balance model (water and energy transfer among soil, plants, and atmosphere)—WetSpass-M—to determine the groundwater balance components on annual, seasonal, and monthly time scales for a period of the last 20 years (2000–2019) in the Khadir canal sub-division. The spatial distribution of water balance components depends on soil texture, land use, groundwater level, slope, and meteorological conditions. Inputs for the model included data on topography, slope, soil, groundwater depth, slope, land use, and meteorological data (e.g., precipitation, air temperature, potential evapotranspiration, and wind speed) which were prepared using ArcGIS. The long-term average annual rainfall (455.7 mm) is distributed as 231 mm (51%) evapotranspiration, 109.1 mm (24%) surface runoff, and 115.6 mm (25%) groundwater recharge. About 51% of groundwater recharge occurs in summer, 18% in autumn, 14% in winter, and 17% in spring. Results showed that the WetSpass-M model properly simulated the water balance components of the Khadir canal sub-division. The WetSpass-M model’s findings can be used to develop a regional groundwater model for simulation of different aquifer management scenarios in the Khadir area, Pakistan.


2008 ◽  
Vol 22 (16) ◽  
pp. 2891-2900 ◽  
Author(s):  
V. G. Mitchell ◽  
H. A. Cleugh ◽  
C. S. B. Grimmond ◽  
J. Xu

2018 ◽  
Vol 10 (3) ◽  
pp. 716 ◽  
Author(s):  
Peter Zeisl ◽  
Michael Mair ◽  
Ulrich Kastlunger ◽  
Peter Bach ◽  
Wolfgang Rauch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document