water balance model
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 62)

H-INDEX

45
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Maryam Khodadadi ◽  
Tarokh Maleki Roozbahani ◽  
Mercedeh Taheri ◽  
Fatemeh Ganji ◽  
Mohsen Nasseri

Abstract Against the paramount role of actual evapotranspiration (ET) in hydrological modeling, determining its values is mixed with different sources of uncertainties. In addition, estimation of ET with energy-based methods (e.g., METRIC) leads to different results with various acceptable initial and boundary conditions (such as land use and cold/hot pixels). The aim of the current research is to allow the uncertainty effects of ET as an interval-based input variable in hydrological modeling. The goal is achieved via feeding the uncertainty of computed ET values to the developed Interval-Based Water Balance (IBWB) model in terms of gray values. To this purpose, the comprehensive monthly water balance model (including surface and groundwater modules) has been revised to a new interval-based form. Moreover, the METRIC model has been used 20 times in each month of computational period to calculate the ET patterns with different hot/cold pixels to provide monthly ensemble ET values. For a comprehensive assessment, the selected water balance model has been calibrated with ensemble means of the computed ET with its classical type. The study area is a mountainous sub-basin of the Sefidrood watershed, Ghorveh-Dehgolan basin, with three alluvial aquifers in the North of Iran. Not only the paradigm shift from determinist to interval-based hydrologic structure improved the statistical metrics of the models’ responses, but also it decreased the uncertainty of the simulated streamflow and groundwater levels.


2022 ◽  
Author(s):  
Dedi Liu ◽  
Dezhi Fu

Abstract Long-term scheduling and short-term decision-making for water resources management often require understanding the relationship of water yield pattern between the annual and monthly scales. As the water yield pattern mainly depends on land cover/use and climate, a unifying catchment water balance model with factors has been adopted to derive a theoretical water yield pattern with annual and monthly scales. Two critical values at the parameters ε=1-√2/2 and ϕ=1.0 are identified. The parameter ε referring to the water storage (land use/cover) and evaporation (climate) changes can make more contribution than ϕ for water yield when ϕ>1.0, especially with ε<1-√2/2. But there is less contribution made by ε when ϕ<1.0. The derived theoretical water yield patterns have also been validated by the observed data or the simulated data through the hydrological model. Due to the bias of the soil moisture data, a lot of the estimated parameter ε values are over its theoretical range, especially for the monthly scale in humid basins. The performance of the derived theoretical water yield pattern at annual scale is much better than that at monthly scale while there are only a few data sets from the arid basin at every months fall within their theoretical ranges. Even the relative contributions of ε is found to be bigger than those of ϕ due to ε<1-√2/2 and ϕ>1.0, there are no significant linear relationships between annual and monthly parameters ε and ϕ. Our results not only validate the derived theoretical water yield pattern with the estimated parameter directly by the observed or simulated data rather than the calibrated parameter, but also can guide for further understanding physical of water balance to conversion time scales for the combing long-term and short-term water resources management.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 143
Author(s):  
Marwan Kheimi ◽  
Shokry M. Abdelaziz

A new daily water balance model is developed and tested in this paper. The new model has a similar model structure to the existing probability distributed rainfall runoff models (PDM), such as HyMOD. However, the model utilizes a new distribution function for soil water storage capacity, which leads to the SCS (Soil Conservation Service) curve number (CN) method when the initial soil water storage is set to zero. Therefore, the developed model is a unification of the PDM and CN methods and is called the PDM–CN model in this paper. Besides runoff modeling, the calculation of daily evaporation in the model is also dependent on the distribution function, since the spatial variability of soil water storage affects the catchment-scale evaporation. The generated runoff is partitioned into direct runoff and groundwater recharge, which are then routed through quick and slow storage tanks, respectively. Total discharge is the summation of quick flow from the quick storage tank and base flow from the slow storage tank. The new model with 5 parameters is applied to 92 catchments for simulating daily streamflow and evaporation and compared with AWMB, SACRAMENTO, and SIMHYD models. The performance of the model is slightly better than HyMOD but is not better compared with the 14-parameter model (SACRAMENTO) in the calibration, and does not perform as well in the validation period as the 7-parameter model (SIMHYD) in some areas, based on the NSE values. The linkage between the PDM–CN model and long-term water balance model is also presented, and a two-parameter mean annual water balance equation is derived from the proposed PDM–CN model.


2021 ◽  
pp. 217-224
Author(s):  
A. Raviraj ◽  
Ramachandran J ◽  
Nitin Kaushal ◽  
Arjit Mishra

Reduction in agricultural water use and increasing the sustainability of water resources can be achieved by studying the water balance of the area and crop water demand. In this paper, by using a simple water balance model, Evapotranspiration, Rainfall, Runoff, Water Demand and Water Requirement different crops are estimated. The crop water requirement and crop water demand for different crops grown in the Periya Pallam Catchment of Upper Bhavani Basin, Tamilnadu, was estimated. Water balance estimation of the area reveals that out of the annual rainfall, runoff is estimated to be 129 mm, effective rainfall is 252 mm, and deep percolation is about 67 mm. The demand for water for agriculture in the study area is about 61 million cubic meters (MCM), but only 19 MCM of water is available through precipitation in the form of effective rainfall. Hence, the remaining 43 MCM of water is supplied through groundwater and other sources. The results will pave the way for sustainable crop water use planning and would achieve water security in the basin.


MAUSAM ◽  
2021 ◽  
Vol 57 (4) ◽  
pp. 639-652
Author(s):  
A. A. L. N. SARMA ◽  
S. SRINIVAS

bl 'kks/k&i= esa ;g crk;k x;k gS fd lewps fo’o esa fo|eku izkÑfrd lalk/kuksa ds nksguksa ¼VsªLM QqVfizaV½ ds QyLo:Ik fo’o tyok;q Ik)fr vO;ofLFkr gks tkrh gSA tks {ks=h; leL;kvksa lesr fo’o tyh; pØ dks vkSj vf/kd rhoz djus ds fy, mRrjnk;h ekuh tk ldrh gSA bl 'kks/k&i= esa ty larqyu fun’kZ ds ek/;e ls Hkkjr esa tyh; {ks= ds ekeys esa bl rF; dks le>us dk iz;kl fd;k x;k gSA bl laca/k esa dh xbZ tk¡p ls eq[;r% lewps Hkkjr ds tyh; QyDlksa ij bulks@yulks flXuy ds tyok;q laca/kh nwj laidZ ds izHkkoksa dh tkudkjh izkIr gqbZ gSA       It is reported that the traced footprints across the world are the consequences of the perturbed world climate system that might be responsible in intensifying the world hydrological cycle with regional implications. An attempt is made here to understand this fact in case of hydrological regime over India through water balance model. The investigation mainly addresses the climate teleconnection impacts of ENSO/LNSO signal on the hydrological fluxes for All India.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xin Zhao ◽  
Ruidi Wang ◽  
Yanyi Zhang ◽  
Dong Hao ◽  
Zirong Yang

It is widely acknowledged that the water balance issue is extremely important for improving the performance and durability of the proton exchange membrane fuel cell. In the presented paper, the visualization platform of the single fuel cell and the water balance model were built to investigate the water transport mechanisms. A transparent 25 cm2 single fuel cell with serpentine flow channels was adopted. Based on the experimental data, firstly, the change rate of water content in the fuel cell was calculated quantitatively and the reliability of the water balance model was rigorously validated. Then, the water state in the fuel cell as the qualitative finding was observed online to assist the research of water transport mechanisms. Finally, the effects of inlet gas temperature, inlet gas humidity, and hydrogen/air stoichiometry on the EIS, the voltage, and the water content in the fuel cell were studied quantitatively, respectively. The corresponding relationship between the performance and the water content in the fuel cell was obtained.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 132
Author(s):  
Paraskevi A. Londra ◽  
Ioannis-Eleftherios Kotsatos ◽  
Nikolaos Theotokatos ◽  
Achilleas T. Theocharis ◽  
Nicholas Dercas

Rainwater harvesting is an ancient water management practice that has been used to cover potable and non-potable water needs. In recent years, this practice is adopted as a promising alternative and sustainable source of water to meet irrigation needs in agriculture in arid and semi-arid regions. In the present study, a daily water balance model was applied to investigate the size of rainwater tanks for irrigation use in greenhouse begonia and tomato cultivation in two regions of Greece with significant greenhouse areas. For the application of the water balance model, daily rainfall depth values of a 12-year time series (2008–2020) from representative rainfall stations of the study areas were used, as well as the daily water needs of the crops. The greenhouse roof was assumed to be the water collection area of the rainwater harvesting system with values ranging from 1000 to 10,000 m2. The analysis of the results showed that in the case of the begonia crop, the covered tanks ranged from 100 to 200 m3 per 1000 m2 greenhouse area with a reliability coefficient that ranged from 65 to 72%, respectively, to meet the water needs of plants. Further increase of the reliability coefficient was carried out with disproportionately large volumes of tanks. In the case of the tomato crop, covered tank volumes ranged from 100 to 290 m3 per 1000 m2 of greenhouse area, and had a reliability coefficient of 90% to 100%, respectively, while uncovered tanks had a maximum reliability coefficient of 91% for a critical tank volume of 177 m3 per 1000 m2 of greenhouse area and decreased for any further increase of tank volume.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256586
Author(s):  
Michael T. Tercek ◽  
David Thoma ◽  
John E. Gross ◽  
Kirk Sherrill ◽  
Stefanie Kagone ◽  
...  

A robust method for characterizing the biophysical environment of terrestrial vegetation uses the relationship between Actual Evapotranspiration (AET) and Climatic Water Deficit (CWD). These variables are usually estimated from a water balance model rather than measured directly and are often more representative of ecologically-significant changes than temperature or precipitation. We evaluate trends and spatial patterns in AET and CWD in the Continental United States (CONUS) during 1980–2019 using a gridded water balance model. The western US had linear regression slopes indicating increasing CWD and decreasing AET (drying), while the eastern US had generally opposite trends. When limits to plant performance characterized by AET and CWD are exceeded, vegetation assemblages change. Widespread increases in aridity throughout the west portends shifts in the distribution of plants limited by available moisture. A detailed look at Sequoia National Park illustrates the high degree of fine-scale spatial variability that exists across elevation and topographical gradients. Where such topographical and climatic diversity exists, appropriate use of our gridded data will require sub-setting to an appropriate area and analyzing according to categories of interest such as vegetation communities or across obvious physical gradients. Recent studies have successfully applied similar water balance models to fire risk and forest structure in both western and eastern U.S. forests, arid-land spring discharge, amphibian colonization and persistence in wetlands, whitebark pine mortality and establishment, and the distribution of arid-land grass species and landscape scale vegetation condition. Our gridded dataset is available free for public use. Our findings illustrate how a simple water balance model can identify important trends and patterns at site to regional scales. However, at finer scales, environmental heterogeneity is driving a range of responses that may not be simply characterized by a single trend.


Sign in / Sign up

Export Citation Format

Share Document