A Modified SCS-CN Method Incorporating Storm Duration and Antecedent Soil Moisture Estimation for Runoff Prediction

2017 ◽  
Vol 31 (5) ◽  
pp. 1713-1727 ◽  
Author(s):  
Wenhai Shi ◽  
Mingbin Huang ◽  
Kate Gongadze ◽  
Lianhai Wu
Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1335 ◽  
Author(s):  
Wenhai Shi ◽  
Ni Wang

Soil Conservation Service Curve Number (SCS-CN) is a popular surface runoff prediction method because it is simple in principle, convenient in application, and easy to accept. However, the method still has several limitations, such as lack of a land slope factor, discounting the storm duration, and the absence of guidance on antecedent moisture conditions. In this study, an equation was developed to improve the SCS-CN method by combining the CN value with the tabulated CN2 value and three introduced factors (slope gradient, soil moisture, and storm duration). The proposed method was tested for calibration and validation with a dataset from three runoff plots in a watershed of the Loess Plateau. The results showed the model efficiencies of the proposed method were improved to 80.58% and 80.44% during the calibration and validation period, respectively, which was better than the standard SCS-CN and the other two modified SCS-CN methods where only a single factor of soil moisture or slope gradient was considered, respectively. Using the parameters calibrated and validated by dataset of the initial three runoff plots, the proposed method was then applied to runoff estimation of the remaining three runoff plots in another watershed. The proposed method reduced the root-mean-square error between the observed and estimated runoff values from 5.53 to 2.01 mm. Furthermore, the parameters of soil moisture (b1 and b2) is the most sensitive, followed by parameters in storm duration (c) and slope equations (a1 and a2), and the least sensitive parameter is the initial abstraction ratio λ on the basis of the proposed method sensitivity analysis. Conclusions can be drawn from the above results that the proposed method incorporating the three factors in the SCS method may estimate runoff more accurately in the Loess Plateau of China.


2009 ◽  
Vol 13 (1) ◽  
pp. 1-16 ◽  
Author(s):  
W. T. Crow ◽  
D. Ryu

Abstract. A number of recent studies have focused on enhancing runoff prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing solely on the constraint of antecedent soil moisture conditions.


1994 ◽  
Vol 15 (11) ◽  
pp. 2323-2333 ◽  
Author(s):  
D. S. LIN ◽  
E. F. WOOD ◽  
K. Beven ◽  
S. SAATCHI

2005 ◽  
Vol 25 (13) ◽  
pp. 1697-1714 ◽  
Author(s):  
A. A Berg ◽  
J. S. Famiglietti ◽  
M. Rodell ◽  
R. H. Reichle ◽  
U. Jambor ◽  
...  

2014 ◽  
Author(s):  
J. Stamenkovic ◽  
C. Notarnicola ◽  
N. Spindler ◽  
G. Cuozzo ◽  
G. Bertoldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document