Analysing the Combined Effect of Barrier Wall and Freshwater Injection Countermeasures on Controlling Saltwater Intrusion in Unconfined Coastal Aquifer Systems

2019 ◽  
Vol 33 (4) ◽  
pp. 1265-1280 ◽  
Author(s):  
Asaad M. Armanuos ◽  
Mona G. Ibrahim ◽  
Wael Elham Mahmod ◽  
Jiro Takemura ◽  
C. Yoshimura
Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1952
Author(s):  
Subrata Halder ◽  
Lingaraj Dhal ◽  
Madan K. Jha

Providing sustainable water supply for domestic needs and irrigated agriculture is one of the most significant challenges for the current century. This challenge is more daunting in coastal regions. Groundwater plays a pivotal role in addressing this challenge and hence, it is under growing stress in several parts of the world. To address this challenge, a proper understanding of groundwater characteristics in an area is essential. In this study, spatio-temporal analyses of pre-monsoon and post-monsoon groundwater-levels of two coastal aquifer systems (upper leaky confined and underlying confined) were carried out in Purba Medinipur District, West Bengal, India. Trend analysis of seasonal groundwater-levels of the two aquifers systems was also performed using Mann-Kendall test, Linear Regression test, and Innovative Trend test. Finally, the status of seawater intrusion in the two aquifers was evaluated using available groundwater-quality data of Chloride (Cl−) and Total Dissolve Solids (TDS). Considerable spatial and temporal variability was found in the seasonal groundwater-levels of the two aquifers. Further, decreasing trends were spotted in the pre-monsoon and post-monsoon groundwater-level time series of the leaky confined and confined aquifers, except pre-monsoon groundwater-levels in Contai-I and Deshpran blocks, and the post-monsoon groundwater-level in Ramnagar-I block for the leaky confined aquifer. The leaky confined aquifer in Contai-I, Contai-III, and Deshpran blocks and the confined aquifer in Nandigram-I and Nandigram-II blocks are vulnerable to seawater intrusion. There is an urgent need for the real-time monitoring of groundwater-levels and groundwater quality in both the aquifer systems, which can ensure efficient management of coastal groundwater reserves.


2017 ◽  
Vol 184 ◽  
pp. 166-176 ◽  
Author(s):  
Hilary Flower ◽  
Mark Rains ◽  
David Lewis ◽  
Jia-Zhong Zhang ◽  
René Price

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2403
Author(s):  
Asaad M. Armanuos ◽  
Nadhir Al-Ansari ◽  
Zaher Mundher Yaseen

Barrier walls are considered one of the most effective methods for facilitating the retreat of saltwater intrusion (SWI). This research plans to examine the effect of using barrier walls for controlling of SWI in sloped unconfined aquifers. The sloping unconfined aquifer is considered with three different bed slopes. The SEAWAT model is implemented to simulate the SWI. For model validation, the numerical results of the seawater wedge at steady state were compared with the analytical solution. Increasing the ratio of flow barrier depth (db/d) forced the saltwater interface to move seaward and increased the repulsion ratio (R). With a positive sloping bed, further embedding the barrier wall from 0.2 to 0.7 caused R to increase from 0.3% to 59%, while it increased from 1.8% to 41.7% and from 3.4% to 46.9% in the case of negative and horizontal slopes, respectively. Embedding the barrier wall to a db/d value of more than 0.4 achieved a greater R value in the three bed-sloping cases. Installing the barrier wall near the saltwater side with greater depth contributed to the retreat of the SWI. With a negative bed slope, moving the barrier wall from Xb/Lo = 1.0 toward the saltwater side (Xb/Lo = 0.2) increased R from 7.21% to 68.75%, whereas R increased from 5.3% to 67% for the horizontal sloping bed and from 5.1% to 64% for the positive sloping bed. The numerical results for the Akrotiri coastal aquifer confirm that the embedment of the barrier wall significantly affects the controlling of SWI by increasing the repulsion ratio (R) and decreasing the SWI length ratio (L/La). Cost-benefit analysis is recommended to determine the optimal design of barrier walls for increasing the cost-effectiveness of the application of barrier walls as a countermeasure for controlling and preventing SWI in sloped unconfined aquifers.


Sign in / Sign up

Export Citation Format

Share Document