groundwater response
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 34)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 22 (2) ◽  
pp. 248-255
Author(s):  
Zinaw D. Shenga ◽  
Andrej šoltész ◽  
Danica Lešková

2021 ◽  
Author(s):  
Timothy C. McMillan ◽  
Martin S. Andersen ◽  
Wendy A. Timms ◽  
Gabriel C. Rau

Abstract. Subsurface hydro-geomechanical properties crucially underpin the management of Earth's resources, yet they are predominantly measured on core-samples in the laboratory while little is known about the representativeness of in-situ conditions. The impact of Earth and atmospheric tides on borehole water levels are ubiquitous and can be used to characterise the subsurface. We illustrate that disentangling the groundwater response to Earth and atmospheric tidal forces in conjunction with hydraulic and linear poroelastic theories leads to a complete determination of the whole hydro-geomechanical parameter space for unconsolidated systems. Further, the characterisation of consolidated systems is possible when using literature estimates of the grain compressibility. While previous field investigations have assumed a Poisson's ratio from literature values, our new approach allows for its estimation under in-situ field conditions. We apply this method to water level and barometric pressure records from four field sites with contrasting hydrogeology. Estimated hydro-geomechanical properties (e.g. specific storage, hydraulic conductivity, porosity, shear-, Young's- and bulk- moduli, Skempton's and Biot-Willis coefficients and undrained/drained Poisson's ratios) are comparable to values reported in the literature, except for consistently negative drained Poisson's ratios which are surprising. Our results reveal an anisotropic response to strain, which is expected for a heterogeneous (layered) lithological profile. Closer analysis reveals that negative Poisson's ratios can be explained by differing in-situ conditions to those from typical laboratory core tests and the small strains generated by Earth and atmospheric tides. Our new approach can be used to passively, and therefore cost-effectively, estimate subsurface hydro-geomechanical properties representative of in-situ conditions. Our method can be used to improve our understanding of the relationship between geological heterogeneity and geomechanical behaviour.


Author(s):  
Christopher Papadopoulos ◽  
Mike Spiliotis ◽  
Ioannis Gkiougkis ◽  
Fotios Pliakas ◽  
Basil Papadopoulos

Abstract This paper studies, through the principles of fuzzy set theory, groundwater response to meteorological drought in the case of an aquifer system located in the plains at the southeast of Xanthi, NE Greece. Meteorological drought is expressed through standardized Reconnaissance Drought Index (RDISt) and Standardized Precipitation Index (SPI), which are calculated for various reference periods. These drought indices are considered as independent variables in multiple fuzzy linear regression based on Tanaka's model, while the observed water table regarding two areas is used as a dependent variable. The fuzzy linear regression of Tanaka is characterized by the inclusion constraints where all the observed data must be included in the produced fuzzy band. Hence, each fuzzy output can get an interval of values where a membership degree corresponds to each of them. A modification of the Tanaka model by adding constraints is proposed in order to avoid irrational behavior. The results show that there was a significant influence of the meteorological drought of the previous hydrological year, while geology plays an important role. Furthermore, the use of RDISt improves the results of fuzzy linear regressions in all cases. Two suitability measures and a measure of comparison between fuzzy numbers are used.


2021 ◽  
Author(s):  
Estanislao Pujades

Excavations below the water table are usually undertaken by combining the protection of retaining walls with dewatering by pumping wells. Severe difficulties may arise if the retaining walls have defects. Therefore, their state must be determined and, if needed, the defects repaired or the dewatering system redesigned. The state of underground retaining walls can be evaluated using hydrogeological methods, but these methods are well-established only for linear excavations. The objective of this work is to propose a procedure to evaluate the state of non-linear underground enclosures by analysing the groundwater response to pumping inside the enclosure. The proposed method, which is based on diagnostic plots (derivative of drawdown with respect to the logarithm of time), allows (1) determining if an underground non-linear enclosure has isolated openings or numerous defects and (2) computing its effective conductance or effective hydraulic conductivity. The methodology is tested with data collected during the excavation of a shaft required for the construction of the high speed train (HST) tunnel in Barcelona, Spain. The procedure can be applied using the wells drilled for dewatering. Although a test before the excavation is recommended to evaluate the underground retaining walls (Watertightness Assessment Test), the method can be applied using data collected at the beginning of the dewatering stage.


2021 ◽  
Author(s):  
Jost Hellwig ◽  
Michael Stoelzle ◽  
Kerstin Stahl

<p>Groundwater is the main source of freshwater and maintains streamflow during drought. Potential future groundwater and baseflow drought hazards depend on the systems' sensitivity to altered recharge conditions. We performed groundwater model experiments using three different generic stress tests to estimate the groundwater- and baseflow drought sensitivity to changes in recharge. The stress tests stem from a stakeholder co-design process that specifically followed the idea of altering known drought events from the past, i.e. asking whether altered recharge could have made a particular event worse. Here we show that groundwater responses to the stress tests are highly heterogeneous across Germany with groundwater heads in the North more sensitive to long-term recharge and in the Central German Uplands to short-term recharge variations. Baseflow droughts are generally more sensitive to intra-annual dynamics and baseflow responses to the stress tests are smaller compared to the groundwater heads. The groundwater drought recovery time is mainly driven by the hydrogeological conditions with slow (fast) recovery in the porous (fractured rock) aquifers. In general, a seasonal shift of recharge (i.e., less summer recharge and more winter recharge) will therefore have low effects on groundwater and baseflow drought severity. A lengthening of dry spells might cause much stronger responses, especially in regions with slow groundwater response to precipitation. Water management may need to consider the spatially different sensitivities of the groundwater system and the potential for more severe groundwater droughts in the large porous aquifers following prolonged meteorological droughts, particularly in the context of climate change projections indicating stronger seasonality and more severe drought events.</p>


2021 ◽  
Author(s):  
Enrico Bonanno ◽  
Günter Blöschl ◽  
Julian Klaus

<p>Groundwater dynamics and flow directions in the near-stream zone depend on groundwater gradients, are highly dynamic in space and time, and reflect the flowpaths between stream channel and groundwater. A wide variety of studies have addressed groundwater flow and changes of flow direction in the near-stream domain which, however, have obtained contrasting results on the drivers and hydrologic conditions of water exchange between stream channel and near-stream groundwater. Here, we investigate groundwater dynamics and flow direction in the stream corridor through a spatially dense groundwater monitoring network over a period of 18 months, addressing the following research questions:</p><ul><li>How and why does groundwater table response vary between precipitation events across different hydrological states in the near-stream domain?</li> <li>How and why does groundwater flow direction in the near-stream domain change across different hydrological conditions?</li> </ul><p>Our results show a large spatio-temporal variability in groundwater table dynamics. During the progression from dry to wet hydrologic conditions, we observe an increase in precipitation depths required to trigger groundwater response and an increase in the timing of groundwater response (i.e. the lag-time between the onset of a precipitation event and groundwater rise). This behaviour can be explained by the subsurface structure with solum, subsolum, and fractured bedrock showing decreasing storage capacity with depth. A Spearman rank (r<sub>s</sub>) correlation analysis reveals a lack of significant correlation between the observed minimum precipitation depth needed to trigger groundwater response with the local thickness of the subsurface layer, as well as with the distance from and the elevation above the stream channel. However, both the increase in groundwater level  and the timing of the groundwater response are positively correlated with the thickness of the solum and subsolum layers and with the distance and the elevation from the stream channel, but only during wet conditions. These results suggest that during wet conditions the spatial differences in the groundwater dynamics are mostly controlled by the regolith depth above the fractured bedrock. However, during dry conditions, local changes in the storage capacities of the fractured bedrock or the presence of preferential flowpaths in the fractured schist matrix could control the spatially heterogeneous timing of groundwater response. In the winter months, the groundwater flow direction points mostly toward the stream channel also many days after an event, suggesting that the groundwater flow from upslope locations controls the near-stream groundwater movement toward the stream channel during wet hydrologic conditions. However, during dry-out or long recessions, the groundwater table at the footslopes decreases to the stream level or below. In these conditions, the groundwater fall lines point toward the footslopes both in the summer and in the winter and in different sections of the stream reach. This study highlights the effect of different initial conditions, precipitation characteristics, streamflow, and potential water inflow from hillslopes on groundwater dynamics and groundwater surface-water exchange in the near stream domain.</p>


2021 ◽  
Author(s):  
Gabriel Rau ◽  
Daniel Schweizer ◽  
Chris Turnadge ◽  
Philipp Blum ◽  
Todd Rasmussen

<p>Determining subsurface hydraulic and geomechanical properties crucially underpins groundwater resource investigation and management. While standard practice relies on active testing, passive approaches require less effort and cost but are underutilised. We present the new Python package named HydroGeoSines (HGS) which quantifies hydraulic and poroelastic subsurface properties using the groundwater response to natural forces (such as Earth tides and atmospheric pressure changes) embedded in standard measurements. All implemented methods are drawn from the peer-reviewed literature. The package includes basic handling of time series, such as joining and aligning records and handling gaps. HGS uses standard atmospheric and groundwater pressure records to estimate the Barometric Response Function (BRF) groundwater state of confinement, hydraulic conductivity, specific storage, barometric efficiency (BE) and porosity. If Earth tides are required, they can be calculated on-the-fly using the PyGTide package which is based on ETERNA and included. HGS allows easy compensation and correction of pressure or hydraulic heads from barometric pressure or Earth tide influences. Further, HGS includes import from and export to common data formats as well as visualisation of data and results. We demonstrate the use of HGS using example datasets from around the world. Since HGS unlocks sophisticated methods for use by anyone with Python skills, we anticipate that it will support subsurface investigations and add value to standard monitoring practice.</p>


Sign in / Sign up

Export Citation Format

Share Document