Distributions of native and invasive Typha (cattail) throughout the Prairie Pothole Region of North America

Author(s):  
Brian A. Tangen ◽  
Sheel Bansal ◽  
Joanna R. Freeland ◽  
Steven E. Travis ◽  
Jennifer D. Wasko ◽  
...  
The Auk ◽  
2006 ◽  
Vol 123 (2) ◽  
pp. 323-334
Author(s):  
Gary L. Krapu ◽  
Jan L. Eldridge ◽  
Cheri L. Gratto-Trevor ◽  
Deborah A. Buhl

Abstract We measured fresh body mass, total body fat, and fat-free dry mass (FFDM) of three species of Arctic-nesting calidrid sandpipers (Baird's Sandpiper [Calidris bairdii], hereafter “BASA”; Semipalmated Sandpiper [C. pusilla], hereafter “SESA”; and White-rumped Sandpiper [C. fuscicollis], hereafter “WRSA”) during spring stopovers in the Prairie Pothole Region (PPR) of North Dakota, and evaluated the contribution of stored fat to (1) energy requirements for migration to their Arctic-breeding grounds and (2) nutrient needs for reproduction. All spring migrant WRSA (n = 124) and BASA (n = 111), and all but 2 of 99 SESA we collected were ≥2 years old. Male and female BASA migrated through North Dakota concurrently, male SESA averaged earlier than females, and WRSA males preceded females. Fat indices (ratio of fat to FFDM) of male and female SESA and WRSA averaged approximately twice those of male and female BASA. Total body fat of male and female BASA increased with date in spring 1980, but not in 1981; slopes were similar for both sexes each year. Male and female SESA arrived lean in 1980 and 1981, and total body fat increased with date in both years, with similar slopes for all combinations of sex and year. Male and female WRSA arrived lean in 1980–1981 and 1981, respectively, and total body fat increased with date, whereas females arrived with fat reserves already acquired in 1980. Interspecific and sex differences in migration schedules probably contributed to variation in fat storage patterns by affecting maintenance energy costs and food availability. Estimated flight ranges of BASA suggest that few could have met their energy needs for migration to the breeding grounds exclusively from fat stored by the time of departure from North Dakota. Estimated flight ranges of SESA and WRSA, along with fresh body masses of both species when live-trapped on or near their breeding grounds in northern Canada, suggest that major parts of both populations stored adequate fat by departure from temperate mid-continental North America to meet their energy requirements for migration and part of their nutrient needs for reproduction. Dinámica de la Grasa en Chorlos que Nidifican en el Ártico durante la Primavera en el Área Continental Central de América del Norte


2016 ◽  
pp. 1-10 ◽  
Author(s):  
Kevin E. Doherty ◽  
David W. Howerter ◽  
James H. Devries ◽  
Johann Walker

2020 ◽  
Vol 47 (4) ◽  
pp. 279
Author(s):  
B. J. Mattsson ◽  
J. H. Devries ◽  
J. A. Dubovsky ◽  
D. Semmens ◽  
W. E. Thogmartin ◽  
...  

Abstract ContextFunding for habitat-management programs to maintain population viability is critical for conservation of migratory species; however, such financial resources are limited and can vary greatly over time. The Prairie Pothole Region (PPR) of North America is an excellent system for examining spatiotemporal patterns of funding for waterfowl conservation, because this transboundary region is crucial for reproduction and migration of many duck species. AimsWe examine large-scale spatiotemporal variation in funding for waterfowl habitat conservation in the PPR during 2007–2016. Specifically, we quantify major sources of funding and how funds were directed towards particular geographies within Canada and the USA. We further examine how sources and magnitude of funding changed over time and in relation to numbers of hunters. MethodsWe assembled data from multiple sources to quantify funding (in US$, 2016 values) from (1) USA states and non-government organisations (NGOs), (2) Canadian government and NGOs, and (3) major USA-based federal funding sources to the Canadian and US portions of the PPR between 2007 and 2016. We fit linear regressions to examine spatiotemporal variation in funding and in numbers of active waterfowl hunters in the USA. Key resultsWhereas annual funding for the Canadian portion was comparatively stable throughout the 10 years (range: US$25–41 million), funding for the US portion was dynamic and increased between the first (range: US$36–48 million) and second (range: US$43–117 million) 5-year intervals, despite concurrent declines in the number of active waterfowl hunters in the USA. ConclusionsWe discovered contrasting trends and dynamics in multiple streams of funding for habitat conservation on each side of the border bisecting the PPR. These findings and approaches warrant closer attention by wildlife professionals. Work is needed to analyse past and future funding for habitat conservation, which can then be used to refine plans for maintaining or recovering populations of migratory species. ImplicationsAlthough funding for waterfowl habitat conservation in the PPR increased over the past decade, trends were inconsistent among subregions and uncertain for some major funding sources. Better understanding of the complexities in funding will help inform more efficient long-term planning efforts for conservation of waterfowl and other migratory species.


2021 ◽  
Vol 13 (19) ◽  
pp. 3878
Author(s):  
Joshua Montgomery ◽  
Craig Mahoney ◽  
Brian Brisco ◽  
Lyle Boychuk ◽  
Danielle Cobbaert ◽  
...  

The Prairie Pothole Region (PPR) of North America is an extremely important habitat for a diverse range of wetland ecosystems that provide a wealth of socio-economic value. This paper describes the ecological characteristics and importance of PPR wetlands and the use of remote sensing for mapping and monitoring applications. While there are comprehensive reviews for wetland remote sensing in recent publications, there is no comprehensive review about the use of remote sensing in the PPR. First, the PPR is described, including the wetland classification systems that have been used, the water regimes that control the surface water and water levels, and the soil and vegetation characteristics of the region. The tools and techniques that have been used in the PPR for analyses of geospatial data for wetland applications are described. Field observations for ground truth data are critical for good validation and accuracy assessment of the many products that are produced. Wetland classification approaches are reviewed, including Decision Trees, Machine Learning, and object versus pixel-based approaches. A comprehensive description of the remote sensing systems and data that have been employed by various studies in the PPR is provided. A wide range of data can be used for various applications, including passive optical data like aerial photographs or satellite-based, Earth-observation data. Both airborne and spaceborne lidar studies are described. A detailed description of Synthetic Aperture RADAR (SAR) data and research are provided. The state of the art is the use of multi-source data to achieve higher accuracies and hybrid approaches. Digital Surface Models are also being incorporated in geospatial analyses to separate forest and shrub and emergent systems based on vegetation height. Remote sensing provides a cost-effective mechanism for mapping and monitoring PPR wetlands, especially with the logistical difficulties and cost of field-based methods. The wetland characteristics of the PPR dictate the need for high resolution in both time and space, which is increasingly possible with the numerous and increasing remote sensing systems available and the trend to open-source data and tools. The fusion of multi-source remote sensing data via state-of-the-art machine learning is recommended for wetland applications in the PPR. The use of such data promotes flexibility for sensor addition, subtraction, or substitution as a function of application needs and potential cost restrictions. This is important in the PPR because of the challenges related to the highly dynamic nature of this unique region.


Sign in / Sign up

Export Citation Format

Share Document