Iterative near–far resistant channel estimation by using a linear minimum mean squared error detector

2007 ◽  
Vol 42 (4) ◽  
pp. 537-542 ◽  
Author(s):  
Ahmet Rizaner ◽  
Hasan Amca ◽  
Kadri Hacıoğlu ◽  
Ali Hakan Ulusoy ◽  
Ansgar Scherb

2017 ◽  
Vol 63 (3) ◽  
pp. 299-304 ◽  
Author(s):  
Okoyeigbo Obinna ◽  
Okokpujie Kennedy ◽  
Omoruyi Osemwegie ◽  
Nkordeh Nsikan

AbstractThe ever-growing need for high data rate, bandwidth efficiency, reliability, less complexity and less power consumption in our communication systems is on the increase. Modern techniques have to be developed and put in place to meet these requirements. Research has shown, that compared to conventional Single Input Single Output (SISO) systems, Multiple- Input Single Output (MISO), and Multiple-Input Multiple- Output (MIMO) can actually increase the data rate of a communication system, without actually requiring more transmit power or bandwidth. This paper aims at the investigation of the existing channel estimation techniques. Based on the pilot arrangement, the block type and comb type are compared, employing the Least Square estimation (L.S) and Minimum Mean Squared Error (MMSE) estimators. Pilots occupy bandwidth, minimizing the number of pilots used to estimate the channel, in order to allow for more bandwidth utilization for data transmission, without compromising the accuracy of the estimates is taken into consideration. Various channel interpolation techniques and pilot-data insertion ratio are investigated, simulated and compared, to determine the best performance technique with less complexity and minimum power consumption. As performance measures, the Mean Squared Error (MSE) and Bit Error Rate (BER) as a function of Signal to Noise power Ratio (SNR) of the different channel estimation techniques are plotted, in order to identify the technique with the most optimal performance. The complexity and energy efficiency of the techniques are also investigated. The system modelling and simulations are carried out using Matlab simulation package. The MIMO gives the optimum performance, followed by the MISO and SISO. This is as a result of the diversity and multiplexing gain experienced in the multiple antenna techniques using the STBC.



Author(s):  
James Weimer ◽  
Nicola Bezzo ◽  
Miroslav Pajic ◽  
Oleg Sokolsky ◽  
Insup Lee


Author(s):  
Santi Koonkarnkhai ◽  
Phongsak Keeratiwintakorn ◽  
Piya Kovintavewat

In bit-patterned media recording (BPMR) channels, the inter-track interference (ITI) is extremely severe at ultra high areal densities, which significantly degrades the system performance. The partial-response maximum-likelihood (PRML) technique that uses an one-dimensional (1D) partial response target might not be able to cope with this severe ITI, especially in the presence of media noise and track mis-registration (TMR). This paper describes the target and equalizer design for highdensity BPMR channels. Specifically, we proposes a two-dimensional (2D) cross-track asymmetric target, based on a minimum mean-squared error (MMSE) approach, to combat media noise and TMR. Results indicate that the proposed 2D target performs better than the previously proposed 2D targets, especially when media noise and TMR is severe.



2014 ◽  
Vol 2014 (2) ◽  
pp. 49-50 ◽  
Author(s):  
Sara Teodoro ◽  
Adão Silva ◽  
Rui Dinis ◽  
Daniel Castanheira ◽  
Atílio Gameiro


Sign in / Sign up

Export Citation Format

Share Document