Prioritized Mobile Node Deployment to Enhance the Lifetime of Wireless Sensor Network

2017 ◽  
Vol 96 (3) ◽  
pp. 3693-3711
Author(s):  
J. Roselin ◽  
P. Latha
2017 ◽  
Vol 16 (7) ◽  
pp. 7031-7039
Author(s):  
Chamanpreet Kaur ◽  
Vikramjit Singh

Wireless sensor network has revolutionized the way computing and software services are delivered to the clients on demand. Our research work proposed a new method for cluster head selection having less computational complexity. It was also found that the modified approach has improved performance to that of the other clustering approaches. The cluster head election mechanism will include various parameters like maximum residual energy of a node, minimum separation distance and minimum distance to the mobile node. Each CH will create a TDMA schedule for the member nodes to transmit the data. Nodes will have various level of power for signal amplification. The three levels of power are used for amplifying the signal. As the member node will send only its own data to the cluster head, the power level of the member node is set to low. The cluster head will send the data of the whole cluster to the mobile node, therefore the power level of the cluster head is set to medium. High power level is used for mobile node which will send the data of the complete sector to the base station. Using low energy level for intra cluster transmissions (within the cluster) with respect to cluster head to mobile node transmission leads in saving much amount of energy. Moreover, multi-power levels also reduce the packet drop ratio, collisions and/ or interference for other signals. It was found that the proposed algorithm gives a much improved network lifetime as compared to existing work. Based on our model, multiple experiments have been conducted using different values of initial energy.


2020 ◽  
pp. 1522-1537 ◽  
Author(s):  
Essa Qasem Shahra ◽  
Tarek Rahil Sheltami ◽  
Elhadi M. Shakshuki

Wireless Sensor Network is deployed in many fields including military operations, mechanical applications, human services, smart homes, etc. However, deploying WSN encounters many challenges. One of the challenges is localizing the node position, especially mobile targets in critical situations. In this paper, the authors compare two types from range-free localization algorithms and one type from range-based algorithms, namely: Received Signal Strength (RSS), Centroid, and Distance Vector Hop (DV-Hops) protocols, using Cooja simulator. RSS localization algorithms require determining values of the RSS from the anchor nodes around the mobile node, to calculate the distance between the unknown mobile and the first three anchor nodes in the mobile range. The centroid localization requires only three anchors to compute the location of the mobile sensor without the need for distance measuring. Lastly, the DV-Hop algorithm uses routing tables of each anchor in the network topology to compute the Average Distance of Hops. The results show that rang-based algorithms are more accurate than range-free.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 215
Author(s):  
Carlos Alberto Socarrás Bertiz ◽  
Juan Jesús Fernández Lozano ◽  
Jose Antonio Gomez-Ruiz ◽  
Alfonso García-Cerezo

Robots, or in general, intelligent vehicles, require large amounts of data to adapt their behavior to the environment and achieve their goals. When their missions take place in large areas, using additional information to that gathered by the onboard sensors frequently offers a more efficient solution of the problem. The emergence of Cyber-Physical Systems and Cloud computing allows this approach, but integration of sensory information, and its effective availability for the robots or vehicles is challenging. This paper addresses the development and implementation of a modular mobile node of a Wireless Sensor Network (WSN), designed to be mounted onboard vehicles, and capable of using different sensors according to mission needs. The mobile node is integrated with an existing static network, transforming it into a Hybrid Wireless Sensor Network (H-WSN), and adding flexibility and range to it. The integration is achieved without the need for multi-hop routing. A database holds the data acquired by both mobile and static nodes, allowing access in real-time to the gathered information. A Human–Machine Interface (HMI) presents this information to users. Finally, the system is tested in real urban scenarios in a use-case of measurement of gas levels.


2012 ◽  
Vol 503-504 ◽  
pp. 1514-1517
Author(s):  
Hai Shen Peng

In view of static wireless sensor node deployment efficiency low and dynamic wireless sensor node deployment non-uniform question, proposed based on a sensation environment object minute bunch with the motion proxy node gathering data method, effectively solves wireless sensor node deployment energy management and data collection and so on crucial the technical difficult problems, thus enhances the wireless sensor network the application value


2019 ◽  
Vol 12 (2) ◽  
pp. 204-216
Author(s):  
Yi Wang ◽  
Paul R. Weckler ◽  
Bei Liu ◽  
Haixin Zhang ◽  
Yuting Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document