Detection of Low-Rate Cloud DDoS Attacks in Frequency Domain Using Fast Hartley Transform

2020 ◽  
Vol 112 (3) ◽  
pp. 1735-1762
Author(s):  
Neha Agrawal ◽  
Shashikala Tapaswi
2014 ◽  
Vol 926-930 ◽  
pp. 1857-1860
Author(s):  
Zhou Zheng ◽  
Meng Yuan Li ◽  
Wei Jiang Wang

In order to reduce the burden of the calculation and the low frequency resolution of the tradition GNSS signal intermediate narrow band anti-jamming method, it introduces a high efficient approach of narrow band interference rejection based on baseband GNSS signal processing. After digital down conversion to baseband and down sampling to a low rate, the interference is removed in frequency domain. According to the theoretical analysis and simulation, it claims that the method can reduce the calculation and increase the detection resolution in frequency domain which will realize a high efficient interference rejection.


2019 ◽  
Vol 2019 (2) ◽  
pp. 80-90 ◽  
Author(s):  
Mugunthan S. R.

The fundamental advantage of the cloud environment is its instant scalability in rendering the service according to the various demands. The recent technological growth in the cloud computing makes it accessible to people from everywhere at any time. Multitudes of user utilizes the cloud platform for their various needs and store their complete details that are personnel as well as confidential in the cloud architecture. The storage of the confidential information makes the cloud architecture attractive to its hackers, who aim in misusing the confidential/secret information’s. The misuse of the services and the resources of the cloud architecture has become a common issue in the day to day usage due to the DDOS (distributed denial of service) attacks. The DDOS attacks are highly mature and continue to grow at a high speed making the detecting and the counter measures a challenging task. So the paper uses the soft computing based autonomous detection for the Low rate-DDOS attacks in the cloud architecture. The proposed method utilizes the hidden Markov Model for observing the flow in the network and the Random forest in classifying the detected attacks from the normal flow. The proffered method is evaluated to measure the performance improvement attained in terms of the Recall, Precision, specificity, accuracy and F-measure.


2021 ◽  
Vol 100 ◽  
pp. 102107
Author(s):  
Xinqian Liu ◽  
Jiadong Ren ◽  
Haitao He ◽  
Qian Wang ◽  
Chen Song

Author(s):  
Jiarun Lin ◽  
Changwang Zhang ◽  
Zhiping Cai ◽  
Qiang Liu ◽  
Jianping Yin
Keyword(s):  

Author(s):  
Mohammad A. Aladaileh ◽  
Mohammed Anbar ◽  
Iznan H. Hasbullah ◽  
Yousef K. Sanjalawe

The number of network users and devices has exponentially increased in the last few decades, giving rise to sophisticated security threats while processing users’ and devices’ network data. Software-Defined Networking (SDN) introduces many new features, but none is more revolutionary than separating the control plane from the data plane. The separation helps DDoS attack detection mechanisms by introducing novel features and functionalities. Since the controller is the most critical part of the SDN network, its ability to control and monitor network traffic flow behavior ensures the network functions properly and smoothly. However, the controller’s importance to the SDN network makes it an attractive target for attackers. Distributed Denial of Service (DDoS) attack is one of the major threats to network security. This paper presents a comprehensive review of information theory-based approaches to detect low-rate and high-rate DDoS attacks on SDN controllers. Additionally, this paper provides a qualitative comparison between this work and the existing reviews on DDoS attack detection approaches using various metrics to highlight this work’s uniqueness. Moreover, this paper provides in-depth discussion and insight into the existing DDoS attack detection approaches to point out their weaknesses that open the avenue for future research directions. Meanwhile, the finding of this paper can be used by other researchers to propose a new or enhanced approach to protect SDN controllers from the threats of DDoS attacks by accurately detecting both low-rate and high-rate DDoS attacks.


Sign in / Sign up

Export Citation Format

Share Document