Design of Multiband Frequency Reconfigurable Antenna with Defected Ground Structure for Wireless Applications

2020 ◽  
Vol 113 (2) ◽  
pp. 867-892
Author(s):  
M. Jenath Sathikbasha ◽  
V. Nagarajan
Author(s):  
Mohd Aziz Aris ◽  
Mohd Tarmizi Ali ◽  
Nurulhuda Abd Rahman ◽  
Idnin Pasya Ibrahim

This paper proposes frequency reconfigurable antenna for outdoor wireless communication systems, the 4 x 4 array antenna has designed at two resonant frequencies 7.5 GHz and 8.85 GHz. The periodic dumbbell geometry etched on the ground layer newly proposed with dual functionality, to control desired frequency and to couple radiating patches at the top substrate with feeding line at the bottom substrate. The reconfigurability of the patch antenna is controlled by utilizing the copper pad of the feeding network with OPEN and SHORT states. The reconfigurable antenna has been simulated and optimized using Computer Simulation Technology (CST) to get the desired responds. The good agreement between simulation and measured results indicates that the frequency reconfigurable patch array antenna using Periodic Dumbbell Slotted Aperture Structure (FRPDSA) is feasible to support outdoor wireless communication systems.


Author(s):  
SHUKLA SHUBHI ◽  
TRIPATHI G.S. ◽  
LOHIA POOJA ◽  
◽  
◽  
...  

2018 ◽  
Vol 7 (3) ◽  
pp. 56-63 ◽  
Author(s):  
A. Jaiswal ◽  
R. K. Sarin ◽  
B. Raj ◽  
S. Sukhija

In this paper, a novel circular slotted rectangular patch antenna with three triangle shape Defected Ground Structure (DGS) has been proposed. Radiating patch is made by cutting circular slots of radius 3 mm from the three sides and center of the conventional rectangular patch structure and three triangle shape defects are presented on the ground layer. The size of the proposed antenna is 38 X 25 mm2. Optimization is performed and simulation results have been obtained using Empire XCcel 5.51 software. Thus, a miniaturized antenna is designed which has three impedance bandwidths of 0.957 GHz,  0.779 GHz, 0.665 GHz with resonant frequencies at 3.33 GHz, 6.97 GHz and 8.59 GHz and the corresponding return loss at the three resonant frequencies are -40 dB, -43 dB and -38.71 dB respectively. A prototype is also fabricated and tested. Fine agreement between the measured and simulated results has been obtained. It has been observed that introducing three triangle shape defects on the ground plane results in increased bandwidth, less return loss, good radiation pattern and better impedance matching over the required operating bands which can be used for wireless applications and future 5G applications.


Sign in / Sign up

Export Citation Format

Share Document