Security Optimization of DF Relay Selection Strategy Under Outdated Scenarios

Author(s):  
Cheng Gong ◽  
Xianyi Rui
2021 ◽  
Author(s):  
Saleemullah Memon ◽  
Kamran Ali Memon ◽  
Junaid Ahmed Uqaili ◽  
Kamlesh Kumar Soothar ◽  
Rabnawaz Sarmad Uqaili ◽  
...  

2021 ◽  
Author(s):  
Annisa Anggun Puspitasari ◽  
Ummi Ainun Nadhiroh ◽  
Mareta Dwi Nor Habibah ◽  
Galuh Setya Palupi ◽  
Mohamad Ridwan ◽  
...  

Author(s):  
L. Ge ◽  
G. J. Chen ◽  
J. A. Chambers

The implementation of cooperative diversity with relays has advantages over point-to-point multiple-input multiple-output (MIMO) systems, in particular, overcoming correlated paths due to small inter-element spacing. A simple transmitter with one antenna may exploit cooperative diversity or space time coding gain through distributed relays. In this paper, similar distributed transmission is considered with the golden code, and the authors propose a new strategy for relay selection, called the maximum-mean selection policy, for distributed transmission with the full maximum-likelihood (ML) decoding and sphere decoding (SD) based on a wireless relay network. This strategy performs a channel strength tradeoff at every relay node to select the best two relays for transmission. It improves on the established one-sided selection strategy of maximum-minimum policy. Simulation results comparing the bit error rate (BER) based on different detectors and a scheme without relay selection, with the maximum-minimum and maximum-mean selection schemes confirm the performance advantage of relay selection. The proposed strategy yields the best performance of the three methods.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Jong Yeol Ryu ◽  
Jung Hoon Lee

In this paper, we propose transmission strategies in multiple-input-single-output (MISO) cooperative communications with two relay nodes in cases when the relay nodes have different trust degrees, where the trust degrees represent how much the relay nodes can be trusted for cooperation. For the given trust degrees and channel conditions, we first derive a relay selection strategy that maximizes the expected achievable rate. We then propose a cooperative transmission strategy of relays with an optimal cooperative beamforming vector that maximizes the expected achievable rate, which is a linear combination of weighted channel vectors. Finally, we derive the optimal transmission strategy, which is a mixed strategy between the relay selection and cooperative transmission strategies with respect to the trust degrees. Our analysis and numerical results show that the proposed transmission strategies increase the expected achievable rate by exploiting the trust degrees of the relay nodes, along with the channel conditions.


Author(s):  
Binbin Hu ◽  
Rongqing Zhang ◽  
Luoyang Fang ◽  
Xiang Cheng ◽  
Liuqing Yang

2020 ◽  
Vol 31 (4) ◽  
pp. 685-691
Author(s):  
Yang Peiyao ◽  
Li Hai ◽  
Hou Shujuan ◽  
Yang Liuqing

2017 ◽  
Vol 31 (19-21) ◽  
pp. 1740076
Author(s):  
Rui Zhu ◽  
Xihao Chen ◽  
Yangchao Huang

Relay-assisted (RA) network with relay node selection is a kind of effective method to improve the channel capacity and convergence performance. However, most of the existing researches about the relay selection did not consider the statically channel state information and the selection cost. This shortage limited the performance and application of RA network in practical scenarios. In order to overcome this drawback, a sequence relay selection strategy (SRSS) was proposed. And the performance upper bound of SRSS was also analyzed in this paper. Furthermore, in order to make SRSS more practical, a novel threshold determination algorithm based on the stochastic dynamic program (SDP) was given to work with SRSS. Numerical results are also presented to exhibit the performance of SRSS with SDP.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jie Li ◽  
Jianrong Bao ◽  
Shenji Luan ◽  
Bin Jiang ◽  
Chao Liu

To improve the reliability and efficiency in cooperative communications, a power optimized single relay selection scheme is proposed by increasing the diversity effort with an improved link-adaptive-regenerative (ILAR) protocol. The protocol determines the forwarding power of a relay node by comparing the signal-to-noise ratio (SNR) at both sides of the node; thus it improves the power efficiency. Moreover, it also proposes a single relay selection strategy to maximize the instantaneous SNR product, which ensures the approximate best channel link quality for good relay forwarding. And the system adjusts the forwarding power in real time and also selects the best relay node participated in the cooperative forwarding. In addition, the cooperation in the protocol is analyzed and the approximate expression of the bit-error-rate (BER) and the outage probability at high SNRs are also derived. Simulation results indicate that the BER and outage probability of the relay selection scheme by the ILAR protocol outperform other contrast schemes of current existing protocols. At BER of 10−2, the proposed scheme with ILAR protocol outperforms those of the decoded-and-forward (DF), the selected DF (SDF), and the amplify-and-forward (AF) protocols by 3.5, 3.5 and 7 dB, respectively. Moreover, the outage probability of the relay system decreases with the growth of the relay number. Therefore, the proposed relay selection scheme with ILAR strategies can be properly used in cooperative communications for good reliability and high power efficiency.


Sign in / Sign up

Export Citation Format

Share Document